BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24204229)

  • 41. Identification of putative domain linkers by a neural network - application to a large sequence database.
    Miyazaki S; Kuroda Y; Yokoyama S
    BMC Bioinformatics; 2006 Jun; 7():323. PubMed ID: 16800897
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative mapping of sequence-based and structure-based protein domains.
    Zhang Y; Chandonia JM; Ding C; Holbrook SR
    BMC Bioinformatics; 2005 Mar; 6():77. PubMed ID: 15790427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical composition is maintained in poorly conserved intrinsically disordered regions and suggests a means for their classification.
    Moesa HA; Wakabayashi S; Nakai K; Patil A
    Mol Biosyst; 2012 Oct; 8(12):3262-73. PubMed ID: 23076520
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural and functional insights into Mimivirus ORFans.
    Saini HK; Fischer D
    BMC Genomics; 2007 May; 8():115. PubMed ID: 17490476
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploring dynamics of protein structure determination and homology-based prediction to estimate the number of superfamilies and folds.
    Sadreyev RI; Grishin NV
    BMC Struct Biol; 2006 Mar; 6():6. PubMed ID: 16549009
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative genomics reveals long, evolutionarily conserved, low-complexity islands in yeast proteins.
    Romov PA; Li F; Lipke PN; Epstein SL; Qiu WG
    J Mol Evol; 2006 Sep; 63(3):415-25. PubMed ID: 16927006
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of secondary structure elements in proteins by hydrophobic cluster analysis.
    Woodcock S; Mornon JP; Henrissat B
    Protein Eng; 1992 Oct; 5(7):629-35. PubMed ID: 1480617
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights.
    Kumar AS; Sowpati DT; Mishra RK
    PLoS One; 2016; 11(11):e0166854. PubMed ID: 27893794
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence.
    Bernardes J; Zaverucha G; Vaquero C; Carbone A
    PLoS Comput Biol; 2016 Jul; 12(7):e1005038. PubMed ID: 27472895
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A domain-centric solution to functional genomics via dcGO Predictor.
    Fang H; Gough J
    BMC Bioinformatics; 2013; 14 Suppl 3(Suppl 3):S9. PubMed ID: 23514627
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MACHOS: Markov clusters of homologous subsequences.
    Wong S; Ragan MA
    Bioinformatics; 2008 Jul; 24(13):i77-85. PubMed ID: 18586748
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein domain organisation: adding order.
    Kummerfeld SK; Teichmann SA
    BMC Bioinformatics; 2009 Jan; 10():39. PubMed ID: 19178743
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intrinsic disorder in the Protein Data Bank.
    Le Gall T; Romero PR; Cortese MS; Uversky VN; Dunker AK
    J Biomol Struct Dyn; 2007 Feb; 24(4):325-42. PubMed ID: 17206849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A structural census of genomes: comparing bacterial, eukaryotic, and archaeal genomes in terms of protein structure.
    Gerstein M
    J Mol Biol; 1997 Dec; 274(4):562-76. PubMed ID: 9417935
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of folding mechanisms for Ig-like beta sandwich proteins based on inter-residue average distance statistics methods.
    Aumpuchin P; Kikuchi T
    Proteins; 2019 Feb; 87(2):120-135. PubMed ID: 30520530
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diversity and genome mapping assessment of disordered and functional domains in trypanosomatids.
    Avelar GST; Gonçalves LO; Guimarães FG; Guimarães PAS; do Nascimento Rocha LG; Carvalho MGR; de Melo Resende D; Ruiz JC
    J Proteomics; 2020 Sep; 227():103919. PubMed ID: 32721629
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conservation of inter-residue interactions and prediction of folding rates of domain repeats.
    Mary RD; Saravanan MK; Selvaraj S
    J Biomol Struct Dyn; 2015; 33(3):534-51. PubMed ID: 24702623
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intrinsically disordered domains: Sequence ➔ disorder ➔ function relationships.
    Zhou J; Oldfield CJ; Yan W; Shen B; Dunker AK
    Protein Sci; 2019 Sep; 28(9):1652-1663. PubMed ID: 31299122
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein's structural organization.
    Sengupta D; Kundu S
    BMC Bioinformatics; 2012 Jun; 13():142. PubMed ID: 22720789
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The active site of human glucocerebrosidase: structural predictions and experimental validations].
    Fabrega S; Durand P; Mornon JP; Lehn P
    J Soc Biol; 2002; 196(2):151-60. PubMed ID: 12360744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.