These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 24204234)
1. An evolution-based approach to De Novo protein design and case study on Mycobacterium tuberculosis. Mitra P; Shultis D; Brender JR; Czajka J; Marsh D; Gray F; Cierpicki T; Zhang Y PLoS Comput Biol; 2013 Oct; 9(10):e1003298. PubMed ID: 24204234 [TBL] [Abstract][Full Text] [Related]
2. EvoDesign: De novo protein design based on structural and evolutionary profiles. Mitra P; Shultis D; Zhang Y Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W273-80. PubMed ID: 23671331 [TBL] [Abstract][Full Text] [Related]
3. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Klepeis JL; Wei Y; Hecht MH; Floudas CA Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306 [TBL] [Abstract][Full Text] [Related]
4. An Evolution-Based Approach to De Novo Protein Design. Brender JR; Shultis D; Khattak NA; Zhang Y Methods Mol Biol; 2017; 1529():243-264. PubMed ID: 27914055 [TBL] [Abstract][Full Text] [Related]
5. Solution structure of a de novo protein from a designed combinatorial library. Wei Y; Kim S; Fela D; Baum J; Hecht MH Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13270-3. PubMed ID: 14593201 [TBL] [Abstract][Full Text] [Related]
6. De novo protein design. I. In search of stability and specificity. Koehl P; Levitt M J Mol Biol; 1999 Nov; 293(5):1161-81. PubMed ID: 10547293 [TBL] [Abstract][Full Text] [Related]
7. Protein WISDOM: a workbench for in silico de novo design of biomolecules. Smadbeck J; Peterson MB; Khoury GA; Taylor MS; Floudas CA J Vis Exp; 2013 Jul; (77):. PubMed ID: 23912941 [TBL] [Abstract][Full Text] [Related]
8. Capturing protein sequence-structure specificity using computational sequence design. Mach P; Koehl P Proteins; 2013 Sep; 81(9):1556-70. PubMed ID: 23609941 [TBL] [Abstract][Full Text] [Related]
9. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. Yang AS; Honig B J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778 [TBL] [Abstract][Full Text] [Related]
10. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles. Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915 [TBL] [Abstract][Full Text] [Related]
11. Stably folded de novo proteins from a designed combinatorial library. Wei Y; Liu T; Sazinsky SL; Moffet DA; Pelczer I; Hecht MH Protein Sci; 2003 Jan; 12(1):92-102. PubMed ID: 12493832 [TBL] [Abstract][Full Text] [Related]
12. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related]
13. Characterizing the existing and potential structural space of proteins by large-scale multiple loop permutations. Dai L; Zhou Y J Mol Biol; 2011 May; 408(3):585-95. PubMed ID: 21376059 [TBL] [Abstract][Full Text] [Related]
14. Iterative sequence/secondary structure search for protein homologs: comparison with amino acid sequence alignments and application to fold recognition in genome databases. Wallqvist A; Fukunishi Y; Murphy LR; Fadel A; Levy RM Bioinformatics; 2000 Nov; 16(11):988-1002. PubMed ID: 11159310 [TBL] [Abstract][Full Text] [Related]
15. De novo design of foldable proteins with smooth folding funnel: automated negative design and experimental verification. Jin W; Kambara O; Sasakawa H; Tamura A; Takada S Structure; 2003 May; 11(5):581-90. PubMed ID: 12737823 [TBL] [Abstract][Full Text] [Related]
16. PFRES: protein fold classification by using evolutionary information and predicted secondary structure. Chen K; Kurgan L Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446 [TBL] [Abstract][Full Text] [Related]
17. Computational protein design with electrostatic focusing: experimental characterization of a conditionally folded helical domain with a reduced amino acid alphabet. Suárez-Diez M; Pujol AM; Matzapetakis M; Jaramillo A; Iranzo O Biotechnol J; 2013 Jul; 8(7):855-64. PubMed ID: 23788466 [TBL] [Abstract][Full Text] [Related]
18. Can molecular dynamics simulations help in discriminating correct from erroneous protein 3D models? Taly JF; Marin A; Gibrat JF BMC Bioinformatics; 2008 Jan; 9():6. PubMed ID: 18179702 [TBL] [Abstract][Full Text] [Related]
19. Terminal sequence importance of de novo proteins from binary-patterned library: stable artificial proteins with 11- or 12-amino acid alphabet. Okura H; Takahashi T; Mihara H Protein Pept Lett; 2012 Jun; 19(6):673-9. PubMed ID: 22519540 [TBL] [Abstract][Full Text] [Related]
20. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure. Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]