These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 24204237)

  • 21. Binding pocket optimization by computational protein design.
    Malisi C; Schumann M; Toussaint NC; Kageyama J; Kohlbacher O; Höcker B
    PLoS One; 2012; 7(12):e52505. PubMed ID: 23300688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design.
    Liang J; Edelsbrunner H; Woodward C
    Protein Sci; 1998 Sep; 7(9):1884-97. PubMed ID: 9761470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binary image representation of a ligand binding site: its application to efficient sampling of a conformational ensemble.
    Sung E; Kim S; Shin W
    BMC Bioinformatics; 2010 May; 11():256. PubMed ID: 20478076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Architectural repertoire of ligand-binding pockets on protein surfaces.
    Weisel M; Kriegl JM; Schneider G
    Chembiochem; 2010 Mar; 11(4):556-63. PubMed ID: 20069621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implications of the small number of distinct ligand binding pockets in proteins for drug discovery, evolution and biochemical function.
    Skolnick J; Gao M; Roy A; Srinivasan B; Zhou H
    Bioorg Med Chem Lett; 2015 Mar; 25(6):1163-70. PubMed ID: 25690787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Development and validation of programs for ligand-binding-pocket search].
    Oda A
    Yakugaku Zasshi; 2011; 131(10):1429-35. PubMed ID: 21963969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison.
    Sael L; Kihara D
    Proteins; 2012 Apr; 80(4):1177-95. PubMed ID: 22275074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0.
    Zhu X; Xiong Y; Kihara D
    Bioinformatics; 2015 Mar; 31(5):707-13. PubMed ID: 25359888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative assessment of strategies to identify similar ligand-binding pockets in proteins.
    Govindaraj RG; Brylinski M
    BMC Bioinformatics; 2018 Mar; 19(1):91. PubMed ID: 29523085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PoLi: A Virtual Screening Pipeline Based on Template Pocket and Ligand Similarity.
    Roy A; Srinivasan B; Skolnick J
    J Chem Inf Model; 2015 Aug; 55(8):1757-70. PubMed ID: 26225536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. POVME 3.0: Software for Mapping Binding Pocket Flexibility.
    Wagner JR; Sørensen J; Hensley N; Wong C; Zhu C; Perison T; Amaro RE
    J Chem Theory Comput; 2017 Sep; 13(9):4584-4592. PubMed ID: 28800393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein pocket and ligand shape comparison and its application in virtual screening.
    Wirth M; Volkamer A; Zoete V; Rippmann F; Michielin O; Rarey M; Sauer WH
    J Comput Aided Mol Des; 2013 Jun; 27(6):511-24. PubMed ID: 23807262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shape variation in protein binding pockets and their ligands.
    Kahraman A; Morris RJ; Laskowski RA; Thornton JM
    J Mol Biol; 2007 Apr; 368(1):283-301. PubMed ID: 17337005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the composition of protein-ligand binding sites on a large scale.
    Khazanov NA; Carlson HA
    PLoS Comput Biol; 2013; 9(11):e1003321. PubMed ID: 24277997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of ligand-binding pockets in proteins using residue preference methods.
    Qiu Z; Wang X
    Protein Pept Lett; 2009; 16(8):984-90. PubMed ID: 19689426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small Glycols Discover Cryptic Pockets on Proteins for Fragment-Based Approaches.
    Bansia H; Mahanta P; Yennawar NH; Ramakumar S
    J Chem Inf Model; 2021 Mar; 61(3):1322-1333. PubMed ID: 33570386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward prediction of functional protein pockets using blind docking and pocket search algorithms.
    Hetényi C; van der Spoel D
    Protein Sci; 2011 May; 20(5):880-93. PubMed ID: 21413095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach.
    Guo Z; Li B; Cheng LT; Zhou S; McCammon JA; Che J
    J Chem Theory Comput; 2015 Feb; 11(2):753-65. PubMed ID: 25941465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural motifs recurring in different folds recognize the same ligand fragments.
    Ausiello G; Gherardini PF; Gatti E; Incani O; Helmer-Citterich M
    BMC Bioinformatics; 2009 Jun; 10():182. PubMed ID: 19527512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface.
    Johnson DK; Karanicolas J
    PLoS Comput Biol; 2013; 9(3):e1002951. PubMed ID: 23505360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.