BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24204320)

  • 1. Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast.
    Romanova NV; Crouse GF
    PLoS Genet; 2013 Oct; 9(10):e1003920. PubMed ID: 24204320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsically disordered regions regulate both catalytic and non-catalytic activities of the MutLα mismatch repair complex.
    Kim Y; Furman CM; Manhart CM; Alani E; Finkelstein IJ
    Nucleic Acids Res; 2019 Feb; 47(4):1823-1835. PubMed ID: 30541127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mismatch repair: Choreographing accurate strand excision.
    Fishel R
    Curr Biol; 2021 Mar; 31(6):R293-R296. PubMed ID: 33756142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human DNA mismatch repair: coupling of mismatch recognition to strand-specific excision.
    Wang H; Hays JB
    Nucleic Acids Res; 2007; 35(20):6727-39. PubMed ID: 17921148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mismatch Repair Incompatibilities in Diverse Yeast Populations.
    Bui DT; Friedrich A; Al-Sweel N; Liti G; Schacherer J; Aquadro CF; Alani E
    Genetics; 2017 Apr; 205(4):1459-1471. PubMed ID: 28193730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair.
    LeBlanc S; Wilkins H; Li Z; Kaur P; Wang H; Erie DA
    Methods Enzymol; 2017; 592():187-212. PubMed ID: 28668121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress on the non-canonical mismatch repair in Mycobacterium and its role in antibiotic resistance.
    Sha-Sha X; Jian-Ping X
    Yi Chuan; 2023 Nov; 45(11):1018-1027. PubMed ID: 38764267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant Organellar MSH1 Is a Displacement Loop-Specific Endonuclease.
    Peñafiel-Ayala A; Peralta-Castro A; Mora-Garduño J; García-Medel P; Zambrano-Pereira AG; Díaz-Quezada C; Abraham-Juárez MJ; Benítez-Cardoza CG; Sloan DB; Brieba LG
    Plant Cell Physiol; 2024 May; 65(4):560-575. PubMed ID: 37756637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modern aspects of the structural and functional organization of the DNA mismatch repair system.
    Perevoztchikova SA; Romanova EA; Oretskaya TS; Friedhoff P; Kubareva EA
    Acta Naturae; 2013 Jul; 5(3):17-34. PubMed ID: 24303200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time monitoring of replication errors' fate reveals the origin and dynamics of spontaneous mutations.
    Enrico Bena C; Ollion J; De Paepe M; Ventroux M; Robert L; Elez M
    Nat Commun; 2024 Mar; 15(1):2702. PubMed ID: 38538613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All three MutL complexes are required for repeat expansion in a human stem cell model of CAG-repeat expansion mediated glutaminase deficiency.
    Hayward B; Kumari D; Santra S; van Karnebeek CDM; van Kuilenburg ABP; Usdin K
    bioRxiv; 2024 May; ():. PubMed ID: 38260514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MutLα suppresses error-prone DNA mismatch repair and preferentially protects noncoding DNA from mutations.
    Kadyrova LY; Mieczkowski PA; Kadyrov FA
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A personal historical view of DNA mismatch repair with an emphasis on eukaryotic DNA mismatch repair.
    Kolodner RD
    DNA Repair (Amst); 2016 Feb; 38():3-13. PubMed ID: 26698650
    [No Abstract]   [Full Text] [Related]  

  • 14. Exonuclease 1-dependent and independent mismatch repair.
    Goellner EM; Putnam CD; Kolodner RD
    DNA Repair (Amst); 2015 Aug; 32():24-32. PubMed ID: 25956862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations.
    Flores-Rozas H; Kolodner RD
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12404-9. PubMed ID: 9770499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput sequencing and in-silico analysis confirm pathogenicity of novel MSH3 variants in African American colorectal cancer.
    Rashid M; Rashid R; Gadewal N; Carethers JM; Koi M; Brim H; Ashktorab H
    Neoplasia; 2024 Mar; 49():100970. PubMed ID: 38281411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mismatch repair endonuclease MutLα tethers duplex regions of DNA together and relieves DNA torsional tension.
    Witte SJ; Rosa IM; Collingwood BW; Piscitelli JM; Manhart CM
    Nucleic Acids Res; 2023 Apr; 51(6):2725-2739. PubMed ID: 36840719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex mutation profiles in mismatch repair and ribonucleotide reductase mutants reveal novel repair substrate specificity of MutS homolog (MSH) complexes.
    Lamb NA; Bard JE; Loll-Krippleber R; Brown GW; Surtees JA
    Genetics; 2022 Jul; 221(4):. PubMed ID: 35686905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple Losses of MSH1, Gain of mtMutS, and Other Changes in the MutS Family of DNA Repair Proteins in Animals.
    Muthye V; Lavrov DV
    Genome Biol Evol; 2021 Sep; 13(9):. PubMed ID: 34402879
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.