These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24204407)

  • 41. One-pot synthesis of 1,2-dihydropyridines: expanding the diverse reactivity of propargyl vinyl ethers.
    Harschneck T; Kirsch SF
    J Org Chem; 2011 Apr; 76(7):2145-56. PubMed ID: 21381702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Palladium-catalyzed regioselective silaboration of pyridines leading to the synthesis of silylated dihydropyridines.
    Oshima K; Ohmura T; Suginome M
    J Am Chem Soc; 2011 May; 133(19):7324-7. PubMed ID: 21510608
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Decoration of dihydropyrimidine and dihydropyridine scaffolds with sugars via Biginelli and Hantzsch multicomponent reactions: an efficient entry to a collection of artificial nucleosides.
    Dondoni A; Massi A
    Mol Divers; 2003; 6(3-4):261-70. PubMed ID: 15068090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The regio- and stereoselective synthesis of trans-2,3-dihydropyridine N-oxides and piperidines.
    Andersson H; Gustafsson M; Boström D; Olsson R; Almqvist F
    Angew Chem Int Ed Engl; 2009; 48(18):3288-91. PubMed ID: 19322871
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic asymmetric synthesis of both enantiomers of 4‑substituted 1,4-dihydropyridines with the use of bifunctional thiourea-ammonium salts bearing different counterions.
    Yoshida K; Inokuma T; Takasu K; Takemoto Y
    Molecules; 2010 Nov; 15(11):8305-26. PubMed ID: 21079568
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Green Formation of Novel Pyridinyltriazole-Salicylidene Schiff Bases.
    Gümüş MK
    Curr Org Synth; 2019; 16(2):309-313. PubMed ID: 31975681
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of dihydropyridines and pyridines from imines and alkynes via C-H activation.
    Colby DA; Bergman RG; Ellman JA
    J Am Chem Soc; 2008 Mar; 130(11):3645-51. PubMed ID: 18302381
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fully automated continuous flow synthesis of highly functionalized imidazo[1,2-a] heterocycles.
    Herath A; Dahl R; Cosford ND
    Org Lett; 2010 Feb; 12(3):412-5. PubMed ID: 20038130
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid Optimization of Reaction Conditions Based on Comprehensive Reaction Analysis Using a Continuous Flow Microwave Reactor.
    Vámosi P; Matsuo K; Masuda T; Sato K; Narumi T; Takeda K; Mase N
    Chem Rec; 2019 Jan; 19(1):77-84. PubMed ID: 29969189
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correction: One-pot multicomponent green Hantzsch synthesis of 1,2-dihydropyridine derivatives with antiproliferative activity.
    Bosica G; Demanuele K; Padrón JM; Puerta A
    Beilstein J Org Chem; 2021; 17():2026-2027. PubMed ID: 34457074
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regioselective synthesis of 3-aminoimidazo[1,2-a]-pyrimidines under continuous flow conditions.
    Butler AJ; Thompson MJ; Maydom PJ; Newby JA; Guo K; Adams H; Chen B
    J Org Chem; 2014 Nov; 79(21):10196-202. PubMed ID: 25310719
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Novel Synthesis of Highly Functionalized Pyridines by a One-Pot, Three-Component Tandem Reaction of Aldehydes, Malononitrile and N-Alkyl-2-cyanoacetamides under Microwave Irradiation.
    Mekheimer RA; Al-Sheikh MA; Medrasi HY; Alsofyani NHH
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29522435
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Facile and Catalyst-Free Microwave-Promoted Multicomponent Reaction for the Synthesis of Functionalised 1,4-Dihydropyridines With Superb Selectivity and Yields.
    Kerru N; Maddila S; Jonnalagadda SB
    Front Chem; 2021; 9():638832. PubMed ID: 33869142
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Trio catalysis merging enamine, brønsted Acid, and metal lewis Acid catalysis: asymmetric three-component aza-diels-alder reaction of substituted cinnamaldehydes, cyclic ketones, and arylamines.
    Deng Y; Kumar S; Wheeler K; Wang H
    Chemistry; 2015 May; 21(21):7874-80. PubMed ID: 25877134
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Mild, Fast, and Scalable Synthesis of Substituted α-Acyloxy Ketones via Multicomponent Reaction Using a Continuous Flow Approach.
    Salvador CEM; Andrade CKZ
    Front Chem; 2019; 7():531. PubMed ID: 31428597
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multicomponent reactions in crop protection chemistry.
    Lamberth C
    Bioorg Med Chem; 2020 May; 28(10):115471. PubMed ID: 32253096
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 58. One-step, three-component synthesis of pyridines and 1,4-dihydropyridines with manifold medicinal utility.
    Evdokimov NM; Magedov IV; Kireev AS; Kornienko A
    Org Lett; 2006 Mar; 8(5):899-902. PubMed ID: 16494469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An umpolung approach to the hydroboration of pyridines: a novel and efficient synthesis of
    Yang H; Zhang L; Zhou FY; Jiao L
    Chem Sci; 2019 Dec; 11(3):742-747. PubMed ID: 34123047
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of new tripodal Hantzsch 1,4-dihydropyridines under solvent-free condition and their conversion to the corresponding tripodal pyridines.
    Zolfigol MA; Kolvari E; Abdoli A; Shiri M
    Mol Divers; 2010 Nov; 14(4):809-13. PubMed ID: 19578944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.