BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24204436)

  • 1. Elucidation of the regio- and chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus - conversion of selected spirocyclic terpenoids and computational analysis.
    Weidmann V; Schaffrath M; Zorn H; Rehbein J; Maison W
    Beilstein J Org Chem; 2013; 9():2233-41. PubMed ID: 24204436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective high performance liquid chromatography and supercritical fluid chromatography separation of spirocyclic terpenoid flavor compounds.
    Schaffrath M; Weidmann V; Maison W
    J Chromatogr A; 2014 Oct; 1363():270-7. PubMed ID: 25042438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective allylic hydroxylation of acyclic terpenoids by CYP154E1 from Thermobifida fusca YX.
    Bogazkaya AM; von Bühler CJ; Kriening S; Busch A; Seifert A; Pleiss J; Laschat S; Urlacher VB
    Beilstein J Org Chem; 2014; 10():1347-1353. PubMed ID: 24991288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation.
    Krügener S; Krings U; Zorn H; Berger RG
    Bioresour Technol; 2010 Jan; 101(2):457-62. PubMed ID: 19765983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allylic oxidations catalyzed by dirhodium caprolactamate via aqueous tert-butyl hydroperoxide: the role of the tert-butylperoxy radical.
    McLaughlin EC; Choi H; Wang K; Chiou G; Doyle MP
    J Org Chem; 2009 Jan; 74(2):730-8. PubMed ID: 19072696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis.
    Qu J; Helmchen G
    Acc Chem Res; 2017 Oct; 50(10):2539-2555. PubMed ID: 28937739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Metal-free Allylic C-H Amination of Terpenoids.
    Teh WP; Obenschain DC; Black BM; Michael FE
    J Am Chem Soc; 2020 Sep; 142(39):16716-16722. PubMed ID: 32909748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable and sustainable electrochemical allylic C-H oxidation.
    Horn EJ; Rosen BR; Chen Y; Tang J; Chen K; Eastgate MD; Baran PS
    Nature; 2016 May; 533(7601):77-81. PubMed ID: 27096371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing a Planar Chiral Rhodium Indenyl Catalyst for Regio- and Enantioselective Allylic C-H Amidation.
    Farr CMB; Kazerouni AM; Park B; Poff CD; Won J; Sharp KR; Baik MH; Blakey SB
    J Am Chem Soc; 2020 Aug; 142(32):13996-14004. PubMed ID: 32667782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic diamination of olefins via N-N bond activation.
    Zhu Y; Cornwall RG; Du H; Zhao B; Shi Y
    Acc Chem Res; 2014 Dec; 47(12):3665-78. PubMed ID: 25402963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction and Analysis of Terpenes/Terpenoids.
    Jiang Z; Kempinski C; Chappell J
    Curr Protoc Plant Biol; 2016; 1():345-358. PubMed ID: 27868090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective C-H Allylic Oxygenation of Cycloalkenes and Terpenoids Photosensitized by [Cu(Xantphos)(neoc)]BF
    Kallitsakis MG; Gioftsidou DK; Tzani MA; Angaridis PA; Terzidis MA; Lykakis IN
    J Org Chem; 2021 Oct; 86(19):13503-13513. PubMed ID: 34435497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regio- and Enantioselective Preparation of Chiral Allylic Sulfones Featuring Elusive Quaternary Stereocenters.
    Cai A; Kleij AW
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):14944-14949. PubMed ID: 31394028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of non-conjugated olefinic substrate analogues with dopamine beta-monooxygenase: catalysis and mechanism-based inhibition.
    Sirimanne SR; May SW
    Biochem J; 1995 Feb; 306 ( Pt 1)(Pt 1):77-85. PubMed ID: 7864832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconversion of car-3-ene by a dioxygenase of Pleurotus sapidus.
    Lehnert N; Krings U; Sydes D; Wittig M; Berger RG
    J Biotechnol; 2012 Jun; 159(4):329-35. PubMed ID: 21723336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium-Catalyzed Asymmetric Allylic C-H Functionalization: Mechanism, Stereo- and Regioselectivities, and Synthetic Applications.
    Wang PS; Gong LZ
    Acc Chem Res; 2020 Dec; 53(12):2841-2854. PubMed ID: 33006283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biaryl phosphites: new efficient adaptative ligands for Pd-catalyzed asymmetric allylic substitution reactions.
    Diéguez M; Pàmies O
    Acc Chem Res; 2010 Feb; 43(2):312-22. PubMed ID: 19886655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinvigorating the Chiral Pool: Chemoenzymatic Approaches to Complex Peptides and Terpenoids.
    Stout CN; Renata H
    Acc Chem Res; 2021 Mar; 54(5):1143-1156. PubMed ID: 33543931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxygenase-Catalyzed Allylic Oxidation Unlocks Telescoped Synthesis of (1
    Heckmann CM; Bürgler M; Paul CE
    ACS Catal; 2024 Mar; 14(5):2985-2991. PubMed ID: 38449536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autoxidation versus biotransformation of alpha-pinene to flavors with Pleurotus sapidus: regioselective hydroperoxidation of alpha-pinene and stereoselective dehydrogenation of verbenol.
    Krings U; Lehnert N; Fraatz MA; Hardebusch B; Zorn H; Berger RG
    J Agric Food Chem; 2009 Nov; 57(21):9944-50. PubMed ID: 19817425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.