These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24204580)

  • 41. Forecasting infectious disease emergence subject to seasonal forcing.
    Miller PB; O'Dea EB; Rohani P; Drake JM
    Theor Biol Med Model; 2017 Sep; 14(1):17. PubMed ID: 28874167
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methods to assess seasonal effects in epidemiological studies of infectious diseases--exemplified by application to the occurrence of meningococcal disease.
    Christiansen CF; Pedersen L; Sørensen HT; Rothman KJ
    Clin Microbiol Infect; 2012 Oct; 18(10):963-9. PubMed ID: 22817396
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen.
    Metcalf CJ; Bjørnstad ON; Grenfell BT; Andreasen V
    Proc Biol Sci; 2009 Dec; 276(1676):4111-8. PubMed ID: 19740885
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recurrent outbreaks of childhood diseases revisited: the impact of isolation.
    Feng Z; Thieme HR
    Math Biosci; 1995; 128(1-2):93-130. PubMed ID: 7606147
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Geographical differences and time trends in the seasonality of birth in Japan.
    Matsuda S; Kahyo H
    Int J Epidemiol; 1994 Feb; 23(1):107-18. PubMed ID: 8194905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): a global comparative review.
    Bloom-Feshbach K; Alonso WJ; Charu V; Tamerius J; Simonsen L; Miller MA; Viboud C
    PLoS One; 2013; 8(2):e54445. PubMed ID: 23457451
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The dynamical consequences of seasonal forcing, immune boosting and demographic change in a model of disease transmission.
    Dafilis MP; Frascoli F; McVernon J; Heffernan JM; McCaw JM
    J Theor Biol; 2014 Nov; 361():124-32. PubMed ID: 25106793
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Environmental drivers of the spatiotemporal dynamics of respiratory syncytial virus in the United States.
    Pitzer VE; Viboud C; Alonso WJ; Wilcox T; Metcalf CJ; Steiner CA; Haynes AK; Grenfell BT
    PLoS Pathog; 2015 Jan; 11(1):e1004591. PubMed ID: 25569275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Resolving the impact of waiting time distributions on the persistence of measles.
    Conlan AJ; Rohani P; Lloyd AL; Keeling M; Grenfell BT
    J R Soc Interface; 2010 Apr; 7(45):623-40. PubMed ID: 19793743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deterministic and stochastic models for the seasonal variability of measles transmission.
    Mollison D; Din SU
    Math Biosci; 1993; 117(1-2):155-77. PubMed ID: 8400572
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Decline and loss of birth seasonality in Spain: analysis of 33,421,731 births over 60 years.
    Cancho-Candela R; Andrés-de Llano JM; Ardura-Fernández J
    J Epidemiol Community Health; 2007 Aug; 61(8):713-8. PubMed ID: 17630371
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A stochastic model for early identification of infectious disease epidemics with application to measles cases in Bangladesh.
    Sharmin S; Rayhan MI
    Asia Pac J Public Health; 2015 Mar; 27(2):NP816-23. PubMed ID: 23165490
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics.
    Krylova O; Earn DJ
    J R Soc Interface; 2013 Jul; 10(84):20130098. PubMed ID: 23676892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measles hotspots and epidemiological connectivity.
    Bharti N; Djibo A; Ferrari MJ; Grais RF; Tatem AJ; McCabe CA; Bjornstad ON; Grenfell BT
    Epidemiol Infect; 2010 Sep; 138(9):1308-16. PubMed ID: 20096146
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-temporal modeling of surveillance data.
    Yu H; Alonso WJ; Feng L; Tan Y; Shu Y; Yang W; Viboud C
    PLoS Med; 2013 Nov; 10(11):e1001552. PubMed ID: 24348203
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence.
    Pitzer VE; Viboud C; Lopman BA; Patel MM; Parashar UD; Grenfell BT
    J R Soc Interface; 2011 Nov; 8(64):1584-93. PubMed ID: 21508015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temperature and the seasonality of births.
    Lam DA; Miron JA
    Adv Exp Med Biol; 1991; 286():73-88. PubMed ID: 2042520
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A nonlinear programming approach for estimation of transmission parameters in childhood infectious disease using a continuous time model.
    Word DP; Cummings DA; Burke DS; Iamsirithaworn S; Laird CD
    J R Soc Interface; 2012 Aug; 9(73):1983-97. PubMed ID: 22337634
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Seasonal dynamics of recurrent epidemics.
    Stone L; Olinky R; Huppert A
    Nature; 2007 Mar; 446(7135):533-6. PubMed ID: 17392785
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fecundity and human birth seasonality in Sweden: a register-based study.
    Dahlberg J; Andersson G
    Reprod Health; 2019 Jun; 16(1):87. PubMed ID: 31234860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.