These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 24204590)
1. The effects of vector movement and distribution in a mathematical model of dengue transmission. Chao DL; Longini IM; Halloran ME PLoS One; 2013; 8(10):e76044. PubMed ID: 24204590 [TBL] [Abstract][Full Text] [Related]
2. The spatial and temporal scales of local dengue virus transmission in natural settings: a retrospective analysis. Sedda L; Vilela APP; Aguiar ERGR; Gaspar CHP; Gonçalves ANA; Olmo RP; Silva ATS; de Cássia da Silveira L; Eiras ÁE; Drumond BP; Kroon EG; Marques JT Parasit Vectors; 2018 Feb; 11(1):79. PubMed ID: 29394906 [TBL] [Abstract][Full Text] [Related]
3. Comparing vector–host and SIR models for dengue transmission. Pandey A; Mubayi A; Medlock J Math Biosci; 2013 Dec; 246(2):252-9. PubMed ID: 24427785 [TBL] [Abstract][Full Text] [Related]
4. Infectivity of West Nile/dengue chimeric viruses for West Nile and dengue mosquito vectors. Hanley KA; Goddard LB; Gilmore LE; Scott TW; Speicher J; Murphy BR; Pletnev AG Vector Borne Zoonotic Dis; 2005; 5(1):1-10. PubMed ID: 15815144 [TBL] [Abstract][Full Text] [Related]
5. [Changes in range of mosquito-borne diseases affected by global climatic fluctuations]. Rydzanicz K; Kiewra D; Lonc E Wiad Parazytol; 2006; 52(2):73-83. PubMed ID: 17120987 [TBL] [Abstract][Full Text] [Related]
6. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Li R; Xu L; Bjørnstad ON; Liu K; Song T; Chen A; Xu B; Liu Q; Stenseth NC Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3624-3629. PubMed ID: 30808752 [TBL] [Abstract][Full Text] [Related]
7. Differential susceptibility of two field aedes aegypti populations to a low infectious dose of dengue virus. Pongsiri A; Ponlawat A; Thaisomboonsuk B; Jarman RG; Scott TW; Lambrechts L PLoS One; 2014; 9(3):e92971. PubMed ID: 24664142 [TBL] [Abstract][Full Text] [Related]
8. A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations. Wang X; Tang S; Cheke RA J Theor Biol; 2016 Dec; 411():27-36. PubMed ID: 27693525 [TBL] [Abstract][Full Text] [Related]
9. Climate change, population immunity, and hyperendemicity in the transmission threshold of dengue. Oki M; Yamamoto T PLoS One; 2012; 7(10):e48258. PubMed ID: 23144746 [TBL] [Abstract][Full Text] [Related]
10. Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. Andraud M; Hens N; Marais C; Beutels P PLoS One; 2012; 7(11):e49085. PubMed ID: 23139836 [TBL] [Abstract][Full Text] [Related]
11. The effects of climate change and globalization on mosquito vectors: evidence from Jeju Island, South Korea on the potential for Asian tiger mosquito (Aedes albopictus) influxes and survival from Vietnam rather than Japan. Lee SH; Nam KW; Jeong JY; Yoo SJ; Koh YS; Lee S; Heo ST; Seong SY; Lee KH PLoS One; 2013; 8(7):e68512. PubMed ID: 23894312 [TBL] [Abstract][Full Text] [Related]
12. Dengue fever transmission between a construction site and its surrounding communities in China. Liu X; Zhang M; Cheng Q; Zhang Y; Ye G; Huang X; Zhao Z; Rui J; Hu Q; Frutos R; Chen T; Song T; Kang M Parasit Vectors; 2021 Jan; 14(1):22. PubMed ID: 33407778 [TBL] [Abstract][Full Text] [Related]
13. Increased efficiency in the second-hand tire trade provides opportunity for dengue control. Pliego Pliego E; Velázquez-Castro J; Eichhorn MP; Fraguela Collar A J Theor Biol; 2018 Jan; 437():126-136. PubMed ID: 29079324 [TBL] [Abstract][Full Text] [Related]
14. Transmission dynamics of two dengue serotypes with vaccination scenarios. González Morales NL; Núñez-López M; Ramos-Castañeda J; Velasco-Hernández JX Math Biosci; 2017 May; 287():54-71. PubMed ID: 27773682 [TBL] [Abstract][Full Text] [Related]
15. The Influence of Spatial Configuration of Residential Area and Vector Populations on Dengue Incidence Patterns in an Individual-Level Transmission Model. Kang JY; Aldstadt J Int J Environ Res Public Health; 2017 Jul; 14(7):. PubMed ID: 28714879 [TBL] [Abstract][Full Text] [Related]
16. A model for the spatial transmission of dengue with daily movement between villages and a city. Nevai AL; Soewono E Math Med Biol; 2014 Jun; 31(2):150-78. PubMed ID: 23475426 [TBL] [Abstract][Full Text] [Related]
17. Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis. Knerer G; Currie CS; Brailsford SC Health Care Manag Sci; 2015 Jun; 18(2):205-17. PubMed ID: 24370922 [TBL] [Abstract][Full Text] [Related]
18. The role of human movement in the transmission of vector-borne pathogens. Stoddard ST; Morrison AC; Vazquez-Prokopec GM; Paz Soldan V; Kochel TJ; Kitron U; Elder JP; Scott TW PLoS Negl Trop Dis; 2009 Jul; 3(7):e481. PubMed ID: 19621090 [TBL] [Abstract][Full Text] [Related]
19. Aggressive organ penetration and high vector transmissibility of epidemic dengue virus-2 Cosmopolitan genotype in a transmission mouse model. Lin JJ; Chung PJ; Dai SS; Tsai WT; Lin YF; Kuo YP; Tsai KN; Chien CH; Tsai DJ; Wu MS; Shu PY; Yueh A; Chen HW; Chen CH; Yu GY PLoS Pathog; 2021 Mar; 17(3):e1009480. PubMed ID: 33784371 [TBL] [Abstract][Full Text] [Related]
20. Improving dengue virus capture rates in humans and vectors in Kamphaeng Phet Province, Thailand, using an enhanced spatiotemporal surveillance strategy. Thomas SJ; Aldstadt J; Jarman RG; Buddhari D; Yoon IK; Richardson JH; Ponlawat A; Iamsirithaworn S; Scott TW; Rothman AL; Gibbons RV; Lambrechts L; Endy TP Am J Trop Med Hyg; 2015 Jul; 93(1):24-32. PubMed ID: 25986580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]