BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2420466)

  • 1. Characterization and localization of two forms of active Ca2+ transport in vesicles derived from rat submandibular glands.
    Hurley TW; Martinez JR
    Cell Calcium; 1986 Feb; 7(1):49-59. PubMed ID: 2420466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of chronic reserpine exposure on Ca2+ sequestering mechanisms in rat submandibular gland vesicles.
    Hurley TW; Martinez JR
    Cell Calcium; 1987 Oct; 8(5):353-63. PubMed ID: 2448040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the kinetic and regulatory properties of high-affinity Ca2+-ATPase activity in acinar preparations of rat submandibular salivary glands.
    Hurley TW; Martinez JR
    Arch Oral Biol; 1985; 30(8):587-94. PubMed ID: 2932093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of cytosolic Ca2+ concentration: studies of high affinity Ca2+ transport in permeabilized acini of rat submandibular glands.
    Hurley TW; Ryan MP
    Arch Oral Biol; 1988; 33(11):793-800. PubMed ID: 3267206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ruthenium red on rat heart subcellular calcium transport.
    Gupta MP; Dixon IM; Zhao D; Dhalla NS
    Can J Cardiol; 1989; 5(1):55-63. PubMed ID: 2465813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of calcium uptake into rough endoplasmic reticulum of rat pancreas.
    Bayerdörffer E; Streb H; Eckhardt L; Haase W; Schulz I
    J Membr Biol; 1984; 81(1):69-82. PubMed ID: 6208363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.
    Kribben A; Tyrakowski T; Schulz I
    Am J Physiol; 1983 May; 244(5):G480-90. PubMed ID: 6133452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium red-insensitive Ca2+ uptake and release by mitochondria.
    Cockrell RS
    Arch Biochem Biophys; 1985 Nov; 243(1):70-9. PubMed ID: 2415064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parotid microsomal Ca2+ transport. Subcellular localization and characterization.
    Kanagasuntheram P; Teo TS
    Biochem J; 1982 Dec; 208(3):789-94. PubMed ID: 6925974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex.
    van Heeswijk MP; Geertsen JA; van Os CH
    J Membr Biol; 1984; 79(1):19-31. PubMed ID: 6737462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular fractionation of pig coronary artery smooth muscle.
    Grover AK; Samson SE; Lee RM
    Biochim Biophys Acta; 1985 Aug; 818(2):191-9. PubMed ID: 2992588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The action of Nupercaine on calcium efflux from rat liver mitochondria.
    Dawson AP; Fulton DV
    Biochem J; 1980 Jun; 188(3):749-55. PubMed ID: 6162452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium transport sensitive to ruthenium red in cytochrome oxidase vesicles reconstituted with mitochondrial proteins.
    Zazueta C; Holguín JA; Ramírez J
    J Bioenerg Biomembr; 1991 Dec; 23(6):889-902. PubMed ID: 1723412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium.
    Wingrove DE; Gunter TE
    J Biol Chem; 1986 Nov; 261(32):15166-71. PubMed ID: 2429966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle.
    Chu A; Saito A; Fleischer S
    Arch Biochem Biophys; 1987 Oct; 258(1):13-23. PubMed ID: 2444161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Ca2+ transport in plasma membranes of branchial epithelium of the North-American eel, Anguilla rostrata LeSueur.
    Flik G; Wendelaar Bonga SE; Fenwick JC
    Biol Cell; 1985; 55(3):265-72. PubMed ID: 2423169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active calcium uptake by islet-cell endoplasmic reticulum.
    Colca JR; McDonald JM; Kotagal N; Patke C; Fink CJ; Greider MH; Lacy PE; McDaniel ML
    J Biol Chem; 1982 Jun; 257(12):7223-8. PubMed ID: 6806268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria.
    Fiskum G; Cockrell RS
    Arch Biochem Biophys; 1985 Aug; 240(2):723-33. PubMed ID: 2411223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+/Ca2+ countertransport in plasma membrane of rat pancreatic acinar cells.
    Bayerdörffer E; Haase W; Schulz I
    J Membr Biol; 1985; 87(2):107-19. PubMed ID: 2416927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.