These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24204815)

  • 1. Grazers and phytoplankton growth in the oceans: an experimental and evolutionary perspective.
    Ratti S; Knoll AH; Giordano M
    PLoS One; 2013; 8(10):e77349. PubMed ID: 24204815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Did sulfate availability facilitate the evolutionary expansion of chlorophyll a+c phytoplankton in the oceans?
    Ratti S; Knoll AH; Giordano M
    Geobiology; 2011 Jul; 9(4):301-12. PubMed ID: 21627761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review.
    Ianora A; Miralto A
    Ecotoxicology; 2010 Mar; 19(3):493-511. PubMed ID: 19924531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different Nutritional Histories Affect the Susceptibility of Algae to Grazing.
    Venuleo M; Giordano M
    J Phycol; 2019 Oct; 55(5):997-1010. PubMed ID: 31309551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocean acidification-induced food quality deterioration constrains trophic transfer.
    Rossoll D; Bermúdez R; Hauss H; Schulz KG; Riebesell U; Sommer U; Winder M
    PLoS One; 2012; 7(4):e34737. PubMed ID: 22509351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutritional status and diet composition affect the value of diatoms as copepod prey.
    Jones RH; Flynn KJ
    Science; 2005 Mar; 307(5714):1457-9. PubMed ID: 15746424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of ZnO nanoparticles to the copepod Acartia tonsa, exposed through a phytoplankton diet.
    Jarvis TA; Miller RJ; Lenihan HS; Bielmyer GK
    Environ Toxicol Chem; 2013 Jun; 32(6):1264-9. PubMed ID: 23417698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.
    Wang C; Lin X; Li L; Lin S
    PLoS One; 2016; 11(3):e0151633. PubMed ID: 26985828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copepod growth and diatoms: insensitivity of Acartia tonsa to the composition of semi-natural plankton mixtures manipulated by silicon:nitrogen ratios in mesocosms.
    Sommer U
    Oecologia; 2009 Feb; 159(1):207-15. PubMed ID: 18985392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth rate hypothesis and efficiency of protein synthesis under different sulphate concentrations in two green algae.
    Giordano M; Palmucci M; Raven JA
    Plant Cell Environ; 2015 Nov; 38(11):2313-7. PubMed ID: 25851030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tale of two eras: Phytoplankton composition influenced by oceanic paleochemistry.
    Giordano M; Olivieri C; Ratti S; Norici A; Raven JA; Knoll AH
    Geobiology; 2018 Sep; 16(5):498-506. PubMed ID: 29851212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological Effects on Coexisting Microalgae of the Allelochemicals Produced by the Bloom-Forming Cyanobacteria
    Śliwińska-Wilczewska S; Felpeto AB; Możdżeń K; Vasconcelos V; Latała A
    Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31817796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The thiamine content of phytoplankton cells is affected by abiotic stress and growth rate.
    Sylvander P; Häubner N; Snoeijs P
    Microb Ecol; 2013 Apr; 65(3):566-77. PubMed ID: 23263236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential interactions between the nematocyst-bearing mixotrophic dinoflagellate Paragymnodinium shiwhaense and common heterotrophic protists and copepods: Killer or prey.
    Jeong HJ; Kim JS; Lee KH; Seong KA; Yoo YD; Kang NS; Kim TH; Song JY; Kwon JE
    Harmful Algae; 2017 Feb; 62():37-51. PubMed ID: 28118891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grazing rates of Calanus finmarchicus on Thalassiosira weissflogii cultured under different levels of ultraviolet radiation.
    Fields DM; Durif CM; Bjelland RM; Shema SD; Skiftesvik AB; Browman HI
    PLoS One; 2011; 6(10):e26333. PubMed ID: 22028858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copepod population-specific response to a toxic diatom diet.
    Lauritano C; Carotenuto Y; Miralto A; Procaccini G; Ianora A
    PLoS One; 2012; 7(10):e47262. PubMed ID: 23056617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction.
    Meyers MT; Cochlan WP; Carpenter EJ; Kimmerer WJ
    PLoS One; 2019; 14(5):e0217047. PubMed ID: 31107897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom.
    Ianora A; Miralto A; Poulet SA; Carotenuto Y; Buttino I; Romano G; Casotti R; Pohnert G; Wichard T; Colucci-D'Amato L; Terrazzano G; Smetacek V
    Nature; 2004 May; 429(6990):403-7. PubMed ID: 15164060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecotoxicological and biochemical mixture effects of an herbicide and a metal at the marine primary producer diatom Thalassiosira weissflogii and the primary consumer copepod Acartia tonsa.
    Filimonova V; Nys C; De Schamphelaere KAC; Gonçalves F; Marques JC; Gonçalves AMM; De Troch M
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):22180-22195. PubMed ID: 29804247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.