BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24205013)

  • 21. Structural insights into chaperone-activity enhancement by a K354E mutation in tomato acidic leucine aminopeptidase.
    DuPrez KT; Scranton MA; Walling LL; Fan L
    Acta Crystallogr D Struct Biol; 2016 May; 72(Pt 5):694-702. PubMed ID: 27139632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development.
    Rohrmann J; Tohge T; Alba R; Osorio S; Caldana C; McQuinn R; Arvidsson S; van der Merwe MJ; Riaño-Pachón DM; Mueller-Roeber B; Fei Z; Nesi AN; Giovannoni JJ; Fernie AR
    Plant J; 2011 Dec; 68(6):999-1013. PubMed ID: 21851430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development.
    Mounet F; Moing A; Garcia V; Petit J; Maucourt M; Deborde C; Bernillon S; Le Gall G; Colquhoun I; Defernez M; Giraudel JL; Rolin D; Rothan C; Lemaire-Chamley M
    Plant Physiol; 2009 Mar; 149(3):1505-28. PubMed ID: 19144766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage.
    Scranton MA; Yee A; Park SY; Walling LL
    J Biol Chem; 2012 May; 287(22):18408-17. PubMed ID: 22493451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development.
    Pattison RJ; Csukasi F; Zheng Y; Fei Z; van der Knaap E; Catalá C
    Plant Physiol; 2015 Aug; 168(4):1684-701. PubMed ID: 26099271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The miRNAome dynamics during developmental and metabolic reprogramming of tomato root infected with potato cyst nematode.
    Koter MD; Święcicka M; Matuszkiewicz M; Pacak A; Derebecka N; Filipecki M
    Plant Sci; 2018 Mar; 268():18-29. PubMed ID: 29362080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein.
    Stanković B; Vian A; Henry-Vian C; Davies E
    Planta; 2000 Dec; 212(1):60-6. PubMed ID: 11219584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response.
    Strassner J; Schaller F; Frick UB; Howe GA; Weiler EW; Amrhein N; Macheroux P; Schaller A
    Plant J; 2002 Nov; 32(4):585-601. PubMed ID: 12445129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative transcriptome analysis of the different tissues between the cultivated and wild tomato.
    Dai Q; Geng L; Lu M; Jin W; Nan X; He PA; Yao Y
    PLoS One; 2017; 12(3):e0172411. PubMed ID: 28278186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Salt stress activation of wound-related genes in tomato plants.
    Dombrowski JE
    Plant Physiol; 2003 Aug; 132(4):2098-107. PubMed ID: 12913164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato.
    Lemaire-Chamley M; Petit J; Garcia V; Just D; Baldet P; Germain V; Fagard M; Mouassite M; Cheniclet C; Rothan C
    Plant Physiol; 2005 Oct; 139(2):750-69. PubMed ID: 16183847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways.
    Dammann C; Rojo E; Sánchez-Serrano JJ
    Plant J; 1997 Apr; 11(4):773-82. PubMed ID: 9161035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato.
    Mysore KS; Crasta OR; Tuori RP; Folkerts O; Swirsky PB; Martin GB
    Plant J; 2002 Nov; 32(3):299-315. PubMed ID: 12410809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants.
    Chico JM; Raíces M; Téllez-Iñón MT; Ulloa RM
    Plant Physiol; 2002 Jan; 128(1):256-70. PubMed ID: 11788771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf.
    Urbanczyk-Wochniak E; Usadel B; Thimm O; Nunes-Nesi A; Carrari F; Davy M; Bläsing O; Kowalczyk M; Weicht D; Polinceusz A; Meyer S; Stitt M; Fernie AR
    Plant Mol Biol; 2006 Mar; 60(5):773-92. PubMed ID: 16649112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Caterpillar labial saliva alters tomato plant gene expression.
    Musser RO; Hum-Musser SM; Lee HK; DesRochers BL; Williams SA; Vogel H
    J Chem Ecol; 2012 Nov; 38(11):1387-401. PubMed ID: 23065106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Local and Systemic Impact of Whitefly (
    Ogden AJ; Boukari W; Nava A; Lucinda N; Sunter G; Curtis WR; Adkins JN; Polston JE
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 33008056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid.
    Chao WS; Gu YQ; Pautot V; Bray EA; Walling LL
    Plant Physiol; 1999 Aug; 120(4):979-92. PubMed ID: 10444081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of elevated peroxidase levels and corn earworm feeding on gene expression in tomato.
    Suzuki H; Dowd PF; Johnson ET; Hum-Musser SM; Musser RO
    J Chem Ecol; 2012 Oct; 38(10):1247-63. PubMed ID: 23135603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. miR168 targets Argonaute1A mediated miRNAs regulation pathways in response to potassium deficiency stress in tomato.
    Liu X; Tan C; Cheng X; Zhao X; Li T; Jiang J
    BMC Plant Biol; 2020 Oct; 20(1):477. PubMed ID: 33076819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.