These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24205169)

  • 21. Generation time and seasonal migration explain variation in spatial population synchrony across European bird species.
    Martin EC; Hansen BB; Lee AM; Herfindal I
    J Anim Ecol; 2023 Sep; 92(9):1904-1918. PubMed ID: 37448134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Encroaching forests decouple alpine butterfly population dynamics.
    Roland J; Matter SF
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13702-4. PubMed ID: 17699630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roads affect the spatial structure of butterfly communities in grassland patches.
    Skórka P; Lenda M; Moroń D
    PeerJ; 2018; 6():e5413. PubMed ID: 30128196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in conservation value from grasslands to savannas to forests: How a temperate canopy cover gradient affects butterfly community composition.
    Grundel R; Dulin GS; Pavlovic NB
    PLoS One; 2020; 15(6):e0234139. PubMed ID: 32559760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stabilizing effects in temporal fluctuations: management, traits, and species richness in high-diversity communities.
    Lepš J; Májeková M; Vítová A; Doležal J; de Bello F
    Ecology; 2018 Feb; 99(2):360-371. PubMed ID: 29083475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Body size and diet breadth drive local extinction risk in butterflies.
    Palash A; Paul S; Resha SK; Khan MK
    Heliyon; 2022 Aug; 8(8):e10290. PubMed ID: 36046541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Population fluctuations and spatial synchrony in an arboreal rodent.
    Selonen V; Remm J; Hanski IK; Henttonen H; Huitu O; Jokinen M; Korpimäki E; Mäkelä A; Sulkava R; Wistbacka R
    Oecologia; 2019 Dec; 191(4):861-871. PubMed ID: 31667601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Butterfly community shifts over two centuries.
    Habel JC; Segerer A; Ulrich W; Torchyk O; Weisser WW; Schmitt T
    Conserv Biol; 2016 Aug; 30(4):754-62. PubMed ID: 26743786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Climate and land-use interactively shape butterfly diversity in tropical rainforest and savanna ecosystems of southwestern China.
    Miao BG; Peng YQ; Yang DR; Kubota Y; Economo EP; Liu C
    Insect Sci; 2021 Aug; 28(4):1109-1120. PubMed ID: 32453476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mark-release-recapture meets Species Distribution Models: Identifying micro-habitats of grassland butterflies in agricultural landscapes.
    Habel JC; Teucher M; Rödder D
    PLoS One; 2018; 13(11):e0207052. PubMed ID: 30485301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?
    McDermott Long O; Warren R; Price J; Brereton TM; Botham MS; Franco AM
    J Anim Ecol; 2017 Jan; 86(1):108-116. PubMed ID: 27796048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial scaling of avian population dynamics: population abundance, growth rate, and variability.
    Jones J; Doran PJ; Holmes RT
    Ecology; 2007 Oct; 88(10):2505-15. PubMed ID: 18027754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Host plant preference and performance of the sibling species of butterflies Leptidea sinapis and Leptidea reali: a test of the trade-off hypothesis for food specialisation.
    Friberg M; Wiklund C
    Oecologia; 2009 Feb; 159(1):127-37. PubMed ID: 19002503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct and indirect effects of climate and habitat factors on butterfly diversity.
    Menéndez R; González-Megías A; Collingham Y; Fox R; Roy DB; Ohlemüller R; Thomas CD
    Ecology; 2007 Mar; 88(3):605-11. PubMed ID: 17503588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Butterfly Density and Behaviour in Uncut Hay Meadow Strips: Behavioural Ecological Consequences of an Agri-Environmental Scheme.
    Lebeau J; Wesselingh RA; Van Dyck H
    PLoS One; 2015; 10(8):e0134945. PubMed ID: 26284618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tell me what you eat and I'll tell you when you fly: diet can predict phenological changes in response to climate change.
    Altermatt F
    Ecol Lett; 2010 Dec; 13(12):1475-84. PubMed ID: 20937056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands.
    Tredennick AT; de Mazancourt C; Loreau M; Adler PB
    Ecology; 2017 Apr; 98(4):971-981. PubMed ID: 28144939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.
    Braschler B; Hill JK
    J Anim Ecol; 2007 May; 76(3):415-23. PubMed ID: 17439459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly.
    Fourcade Y; Ranius T; Öckinger E
    J Anim Ecol; 2017 Oct; 86(6):1339-1351. PubMed ID: 28796909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of trends in habitat and resource selection by the Spanish Festoon, Zerynthia rumina, and the whole butterfly community in a semiarid Mediterranean ecosystem.
    Ochoa-Hueso R; de la Puente Ranea D; Viejo JL
    J Insect Sci; 2014 Apr; 14():51. PubMed ID: 25373198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.