These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24205187)

  • 1. Linking plant specialization to dependence in interactions for seed set in pollination networks.
    Tur C; Castro-Urgal R; Traveset A
    PLoS One; 2013; 8(10):e78294. PubMed ID: 24205187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines.
    Weiner CN; Werner M; Linsenmair KE; Blüthgen N
    Ecology; 2014 Feb; 95(2):466-74. PubMed ID: 24669739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pollinators enhance crop yield and shorten the growing season by modulating plant functional characteristics: A comparison of 23 canola varieties.
    Adamidis GC; Cartar RV; Melathopoulos AP; Pernal SF; Hoover SE
    Sci Rep; 2019 Oct; 9(1):14208. PubMed ID: 31578408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new native plant in the neighborhood: effects on plant-pollinator networks, pollination, and plant reproductive success.
    Hernández-Castellano C; Rodrigo A; Gómez JM; Stefanescu C; Calleja JA; Reverté S; Bosch J
    Ecology; 2020 Jul; 101(7):e03046. PubMed ID: 32222070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.
    Carstensen DW; Sabatino M; Morellato LP
    Ecology; 2016 May; 97(5):1298-306. PubMed ID: 27349105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollinator richness, pollination networks, and diet adjustment along local and landscape gradients of resource diversity.
    Gómez-Martínez C; González-Estévez MA; Cursach J; Lázaro A
    Ecol Appl; 2022 Sep; 32(6):e2634. PubMed ID: 35403772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The robustness of plant-pollinator assemblages: linking plant interaction patterns and sensitivity to pollinator loss.
    Astegiano J; Massol F; Vidal MM; Cheptou PO; Guimarães PR
    PLoS One; 2015; 10(2):e0117243. PubMed ID: 25646762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do pollinator visitation rate and seed set relate to species' floral traits and community context?
    Lázaro A; Jakobsson A; Totland Ø
    Oecologia; 2013 Nov; 173(3):881-93. PubMed ID: 23579571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant-pollinator network structural properties differentially affect pollen transfer dynamics and pollination success.
    Arceo-Gómez G; Barker D; Stanley A; Watson T; Daniels J
    Oecologia; 2020 Apr; 192(4):1037-1045. PubMed ID: 32274585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological perspectives on female and male reproductive success with competition in two Serapias species.
    Borràs J; Cursach J; Herrera C; Perelló-Suau S; Capó M
    Ann Bot; 2024 Jul; 134(2):311-324. PubMed ID: 38712800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pollination networks along the sea-inland gradient reveal landscape patterns of keystone plant species.
    Fantinato E; Del Vecchio S; Silan G; Buffa G
    Sci Rep; 2018 Oct; 8(1):15221. PubMed ID: 30323249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting effects of invasive plants in plant-pollinator networks.
    Bartomeus I; Vilà M; Santamaría L
    Oecologia; 2008 Apr; 155(4):761-70. PubMed ID: 18188603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large herbivores transform plant-pollinator networks in an African savanna.
    Guy TJ; Hutchinson MC; Baldock KCR; Kayser E; Baiser B; Staniczenko PPA; Goheen JR; Pringle RM; Palmer TM
    Curr Biol; 2021 Jul; 31(13):2964-2971.e5. PubMed ID: 34004144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lessons from Red Data Books: Plant Vulnerability Increases with Floral Complexity.
    Stefanaki A; Kantsa A; Tscheulin T; Charitonidou M; Petanidou T
    PLoS One; 2015; 10(9):e0138414. PubMed ID: 26390402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Floral adaptation to local pollinator guilds in a terrestrial orchid.
    Sun M; Gross K; Schiestl FP
    Ann Bot; 2014 Jan; 113(2):289-300. PubMed ID: 24107683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High species turnover and unique plant-pollinator interactions make a hyperdiverse mountain.
    Minachilis K; Kantsa A; Devalez J; Vujic A; Pauly A; Petanidou T
    J Anim Ecol; 2023 May; 92(5):1001-1015. PubMed ID: 36754546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invasion of a dominant floral resource: effects on the floral community and pollination of native plants.
    Goodell K; Parker IM
    Ecology; 2017 Jan; 98(1):57-69. PubMed ID: 28052387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sterile flowers increase pollinator attraction and promote female success in the Mediterranean herb Leopoldia comosa.
    Morales CL; Traveset A; Harder LD
    Ann Bot; 2013 Jan; 111(1):103-11. PubMed ID: 23131298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High invasive pollen transfer, yet low deposition on native stigmas in a Carpobrotus-invaded community.
    Bartomeus I; Bosch J; Vilà M
    Ann Bot; 2008 Sep; 102(3):417-24. PubMed ID: 18593688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction frequency and per-interaction effects as predictors of total effects in plant-pollinator mutualisms: a case study with the self-incompatible herb Linaria lilacina.
    Sánchez-Lafuente AM; Rodríguez-Gironés MA; Parra R
    Oecologia; 2012 Jan; 168(1):153-65. PubMed ID: 21789530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.