These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 24205218)
41. Structural and functional consequences of single amino acid substitutions in the pyrimidine base binding pocket of Escherichia coli CMP kinase. Ofiteru A; Bucurenci N; Alexov E; Bertrand T; Briozzo P; Munier-Lehmann H; Gilles AM FEBS J; 2007 Jul; 274(13):3363-73. PubMed ID: 17542990 [TBL] [Abstract][Full Text] [Related]
42. Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR. Bann JG; Frieden C Biochemistry; 2004 Nov; 43(43):13775-86. PubMed ID: 15504040 [TBL] [Abstract][Full Text] [Related]
43. Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange. Houry WA; Scheraga HA Biochemistry; 1996 Sep; 35(36):11734-46. PubMed ID: 8794754 [TBL] [Abstract][Full Text] [Related]
44. Folding intermediates of a beta-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism. Kleinschmidt JH; Tamm LK Biochemistry; 1996 Oct; 35(40):12993-3000. PubMed ID: 8855933 [TBL] [Abstract][Full Text] [Related]
45. Differential salt-induced stabilization of structure in the initial folding intermediate ensemble of barstar. Pradeep L; Udgaonkar JB J Mol Biol; 2002 Nov; 324(2):331-47. PubMed ID: 12441111 [TBL] [Abstract][Full Text] [Related]
46. A very fast phase in the refolding of disulfide-intact ribonuclease A: implications for the refolding and unfolding pathways. Houry WA; Rothwarf DM; Scheraga HA Biochemistry; 1994 Mar; 33(9):2516-30. PubMed ID: 8117713 [TBL] [Abstract][Full Text] [Related]
47. Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate. Thomas S; Bakkes PJ; Smits SH; Schmitt L Biochim Biophys Acta; 2014 Sep; 1844(9):1500-10. PubMed ID: 24865936 [TBL] [Abstract][Full Text] [Related]
48. Kinetics of folding of the IgG binding domain of peptostreptococcal protein L. Scalley ML; Yi Q; Gu H; McCormack A; Yates JR; Baker D Biochemistry; 1997 Mar; 36(11):3373-82. PubMed ID: 9116017 [TBL] [Abstract][Full Text] [Related]
49. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways. Patra AK; Udgaonkar JB Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706 [TBL] [Abstract][Full Text] [Related]
50. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Traut TW Eur J Biochem; 1994 May; 222(1):9-19. PubMed ID: 8200357 [TBL] [Abstract][Full Text] [Related]
51. The contribution of CMP kinase to the efficiency of DNA repair. Tsao N; Lee MH; Zhang W; Cheng YC; Chang ZF Cell Cycle; 2015; 14(3):354-63. PubMed ID: 25659034 [TBL] [Abstract][Full Text] [Related]
52. Pro-sequence and Ca2+-binding: implications for folding and maturation of Ntn-hydrolase penicillin amidase from E. coli. Ignatova Z; Wischnewski F; Notbohm H; Kasche V J Mol Biol; 2005 May; 348(4):999-1014. PubMed ID: 15843029 [TBL] [Abstract][Full Text] [Related]
53. Parallel channels and rate-limiting steps in complex protein folding reactions: prolyl isomerization and the alpha subunit of Trp synthase, a TIM barrel protein. Wu Y; Matthews CR J Mol Biol; 2002 Oct; 323(2):309-25. PubMed ID: 12381323 [TBL] [Abstract][Full Text] [Related]
54. Escherichia coli UMP-kinase, a member of the aspartokinase family, is a hexamer regulated by guanine nucleotides and UTP. Serina L; Blondin C; Krin E; Sismeiro O; Danchin A; Sakamoto H; Gilles AM; Bârzu O Biochemistry; 1995 Apr; 34(15):5066-74. PubMed ID: 7711027 [TBL] [Abstract][Full Text] [Related]
55. Solution structure and function of an essential CMP kinase of Streptococcus pneumoniae. Yu L; Mack J; Hajduk PJ; Kakavas SJ; Saiki AY; Lerner CG; Olejniczak ET Protein Sci; 2003 Nov; 12(11):2613-21. PubMed ID: 14573872 [TBL] [Abstract][Full Text] [Related]
56. The folding kinetics and thermodynamics of the Fyn-SH3 domain. Plaxco KW; Guijarro JI; Morton CJ; Pitkeathly M; Campbell ID; Dobson CM Biochemistry; 1998 Feb; 37(8):2529-37. PubMed ID: 9485402 [TBL] [Abstract][Full Text] [Related]
57. Revealing a concealed intermediate that forms after the rate-limiting step of refolding of the SH3 domain of PI3 kinase. Wani AH; Udgaonkar JB J Mol Biol; 2009 Mar; 387(2):348-62. PubMed ID: 19356591 [TBL] [Abstract][Full Text] [Related]
58. Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy. Guijarro JI; Morton CJ; Plaxco KW; Campbell ID; Dobson CM J Mol Biol; 1998 Feb; 276(3):657-67. PubMed ID: 9551103 [TBL] [Abstract][Full Text] [Related]
59. Single proline residues can dictate the oxidative folding pathways of cysteine-rich peptides. Boulègue C; Milbradt AG; Renner C; Moroder L J Mol Biol; 2006 May; 358(3):846-56. PubMed ID: 16530224 [TBL] [Abstract][Full Text] [Related]
60. The structure of uridylate kinase with its substrates, showing the transition state geometry. Müller-Dieckmann HJ; Schulz GE J Mol Biol; 1994 Feb; 236(1):361-7. PubMed ID: 8107116 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]