These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24205218)

  • 61. Energetic coupling between native-state prolyl isomerization and conformational protein folding.
    Jakob RP; Schmid FX
    J Mol Biol; 2008 Apr; 377(5):1560-75. PubMed ID: 18325533
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fast folding of Escherichia coli cyclophilin A: a hypothesis of a unique hydrophobic core with a phenylalanine cluster.
    Ikura T; Hayano T; Takahashi N; Kuwajima K
    J Mol Biol; 2000 Mar; 297(3):791-802. PubMed ID: 10731429
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Equilibrium and kinetic analyses of unfolding and refolding for the conserved proline mutants of tryptophan synthase alpha subunit.
    Ogasahara K; Yutani K
    Biochemistry; 1997 Jan; 36(4):932-40. PubMed ID: 9020793
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Folding kinetics of the protein pectate lyase C reveal fast-forming intermediates and slow proline isomerization.
    Kamen DE; Woody RW
    Biochemistry; 2002 Apr; 41(14):4713-23. PubMed ID: 11926834
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Early closure of a long loop in the refolding of adenylate kinase: a possible key role of non-local interactions in the initial folding steps.
    Orevi T; Ben Ishay E; Pirchi M; Jacob MH; Amir D; Haas E
    J Mol Biol; 2009 Jan; 385(4):1230-42. PubMed ID: 19013178
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Unfolding-refolding kinetics of the tryptophan synthase alpha subunit by CD and fluorescence measurements.
    Ogasahara K; Yutani K
    J Mol Biol; 1994 Mar; 236(4):1227-40. PubMed ID: 8120898
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Folding kinetics of phage T4 thioredoxin.
    Borden KL; Richards FM
    Biochemistry; 1990 Mar; 29(12):3071-7. PubMed ID: 2186806
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant.
    Ruan B; Hoskins J; Bryan PN
    Biochemistry; 1999 Jun; 38(26):8562-71. PubMed ID: 10387104
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Apparent radii of the native, stable intermediates and unfolded conformers of the alpha-subunit of tryptophan synthase from E. coli, a TIM barrel protein.
    Gualfetti PJ; Iwakura M; Lee JC; Kihara H; Bilsel O; Zitzewitz JA; Matthews CR
    Biochemistry; 1999 Oct; 38(40):13367-78. PubMed ID: 10529212
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The slow step of folding of Staphylococcus aureus PC1 beta-lactamase involves the collapse of a surface loop rate limited by the trans to cis isomerization of a non-proline peptide bond.
    Wheeler KA; Hawkins AR; Pain R; Virden R
    Proteins; 1998 Dec; 33(4):550-7. PubMed ID: 9849938
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional intermediate in the refolding pathway of a large and multidomain protein malate synthase G.
    Dahiya V; Chaudhuri TK
    Biochemistry; 2013 Jul; 52(26):4517-30. PubMed ID: 23718231
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of proline mutations on the folding of staphylococcal nuclease.
    Maki K; Ikura T; Hayano T; Takahashi N; Kuwajima K
    Biochemistry; 1999 Feb; 38(7):2213-23. PubMed ID: 10026306
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Proline 54 trans-cis isomerization is responsible for the kinetic partitioning at the last-step photocycle of photoactive yellow protein.
    Lee BC; Hoff WD
    Protein Sci; 2008 Dec; 17(12):2101-10. PubMed ID: 18794212
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine.
    Mayr LM; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):913-26. PubMed ID: 8515460
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Folding of ribonuclease T1. 2. Kinetic models for the folding and unfolding reactions.
    Kiefhaber T; Quaas R; Hahn U; Schmid FX
    Biochemistry; 1990 Mar; 29(12):3061-70. PubMed ID: 2110824
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Non-prolyl cis-trans peptide bond isomerization as a rate-determining step in protein unfolding and refolding.
    Odefey C; Mayr LM; Schmid FX
    J Mol Biol; 1995 Jan; 245(1):69-78. PubMed ID: 7823321
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of a partially unfolded structure of cytochrome c induced by sodium dodecyl sulphate and the kinetics of its refolding.
    Das TK; Mazumdar S; Mitra S
    Eur J Biochem; 1998 Jun; 254(3):662-70. PubMed ID: 9688280
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Manipulating the Folding Landscape of a Multidomain Protein.
    Kantaev R; Riven I; Goldenzweig A; Barak Y; Dym O; Peleg Y; Albeck S; Fleishman SJ; Haran G
    J Phys Chem B; 2018 Dec; 122(49):11030-11038. PubMed ID: 30088929
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Differential stabilization of two hydrophobic cores in the transition state of the villin 14T folding reaction.
    Choe SE; Li L; Matsudaira PT; Wagner G; Shakhnovich EI
    J Mol Biol; 2000 Nov; 304(1):99-115. PubMed ID: 11071813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.