These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24205295)

  • 1. A novel approach to solve the "missing marker problem" in marker-based motion analysis that exploits the segment coordination patterns in multi-limb motion data.
    Federolf PA
    PLoS One; 2013; 8(10):e78689. PubMed ID: 24205295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Missing Marker Trajectories in Human Motion Data Using Marker Intercorrelations.
    Gløersen Ø; Federolf P
    PLoS One; 2016; 11(3):e0152616. PubMed ID: 27031243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the multi-segmental postural movement strategies utilized in bipedal, tandem and one-leg stance as quantified by a principal component decomposition of marker coordinates.
    Federolf P; Roos L; Nigg BM
    J Biomech; 2013 Oct; 46(15):2626-33. PubMed ID: 24021753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust and automatic motion-capture data recovery using soft skeleton constraints and model averaging.
    Tits M; Tilmanne J; Dutoit T
    PLoS One; 2018; 13(7):e0199744. PubMed ID: 29990367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual information and multi-joint coordination patterns in one-leg stance.
    Wang Z; Molenaar PC; Challis JH; Jordan K; Newell KM
    Gait Posture; 2014 Mar; 39(3):909-14. PubMed ID: 24388780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous identification of human body model parameters and gait trajectory from 3D motion capture data.
    Ziegler J; Reiter A; Gattringer H; Müller A
    Med Eng Phys; 2020 Oct; 84():193-202. PubMed ID: 32977918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-constrained inverse kinematics for the human hand.
    Samadani AA; Kulić D; Gorbet R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6780-4. PubMed ID: 23367486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using cone-beam CT projection images to estimate the average and complete trajectory of a fiducial marker moving with respiration.
    Becker N; Smith WL; Quirk S; Kay I
    Phys Med Biol; 2010 Dec; 55(24):7439-52. PubMed ID: 21098915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints.
    Klous M; Klous S
    J Biomech Eng; 2010 Jul; 132(7):074501. PubMed ID: 20590294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of soft tissue movement during level walking: translations and rotations of skin markers.
    Gao B; Zheng NN
    J Biomech; 2008 Nov; 41(15):3189-95. PubMed ID: 18930462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: a phantom study.
    Yang J; Yamamoto T; Mazin SR; Graves EE; Keall PJ
    Med Phys; 2014 Feb; 41(2):021718. PubMed ID: 24506609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating missing marker positions using low dimensional Kalman smoothing.
    Burke M; Lasenby J
    J Biomech; 2016 Jun; 49(9):1854-1858. PubMed ID: 27155749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A posture optimization algorithm for model-based motion capture of movement sequences.
    Zakotnik J; Matheson T; Dürr V
    J Neurosci Methods; 2004 May; 135(1-2):43-54. PubMed ID: 15020088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Rank and Sparse Recovery of Human Gait Data.
    Kamali K; Akbari AA; Desrosiers C; Akbarzadeh A; Otis MJ; Ayena JC
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic inference of multijoint movements, skeletal parameters and marker attachments from diverse motion capture data.
    Todorov E
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1927-39. PubMed ID: 18018688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model-based motion capture marker location refinement approach using inverse kinematics from dynamic trials.
    Price MA; LaPrè AK; Johnson RT; Umberger BR; Sup FC
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3283. PubMed ID: 31721456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.