These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 24205450)
1. Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni-Fe. Schäfer J; Albe K Beilstein J Nanotechnol; 2013; 4():542-53. PubMed ID: 24205450 [TBL] [Abstract][Full Text] [Related]
2. Molecular Dynamics as a Means to Investigate Grain Size and Strain Rate Effect on Plastic Deformation of 316 L Nanocrystalline Stainless-Steel. Husain A; La P; Hongzheng Y; Jie S Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698390 [TBL] [Abstract][Full Text] [Related]
3. Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum. Li X; Wei Y; Yang W; Gao H Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16108-13. PubMed ID: 19805266 [TBL] [Abstract][Full Text] [Related]
4. The Strongest Size in Gradient Nanograined Metals. Cao P Nano Lett; 2020 Feb; 20(2):1440-1446. PubMed ID: 31944115 [TBL] [Abstract][Full Text] [Related]
5. Mechanical Properties and Deformation Mechanisms of Nanocrystalline U-10Mo Alloys by Molecular Dynamics Simulation. Ou X; Shen Y; Yang Y; You Z; Wang P; Yang Y; Tian X Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444932 [TBL] [Abstract][Full Text] [Related]
6. Effect of Alloying Elements on the High-Temperature Yielding Behavior of Multicomponent γ'-L1 Wang CY; Matsunaga S; Toda Y; Murakami H; Yeh AC; Yamabe-Mitarai Y Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793347 [TBL] [Abstract][Full Text] [Related]
7. Strengthening Mechanism of Rotary-Forged Deformable Biodegradable Zn-0.45Li Alloys. Ding F; Zhang Y; Zhu X; Guo P; Yang L; Zhang Q; Xu C; Sun W; Song Z Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109837 [TBL] [Abstract][Full Text] [Related]
8. In situ atomic scale mechanisms of strain-induced twin boundary shear to high angle grain boundary in nanocrystalline Pt. Wang L; Teng J; Wu Y; Sha X; Xiang S; Mao S; Yu G; Zhang Z; Zou J; Han X Ultramicroscopy; 2018 Dec; 195():69-73. PubMed ID: 30195095 [TBL] [Abstract][Full Text] [Related]
9. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy. Hou J; Li Q; Wu C; Zheng L Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934707 [TBL] [Abstract][Full Text] [Related]
10. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide. Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450 [TBL] [Abstract][Full Text] [Related]
11. Size effect on the deformation mechanisms of nanocrystalline platinum thin films. Shu X; Kong D; Lu Y; Long H; Sun S; Sha X; Zhou H; Chen Y; Mao S; Liu Y Sci Rep; 2017 Oct; 7(1):13264. PubMed ID: 29038576 [TBL] [Abstract][Full Text] [Related]
12. Triple Junction Segregation Dominates the Stability of Nanocrystalline Alloys. Barnett AK; Hussein O; Alghalayini M; Hinojos A; Nathaniel JE; Medlin DL; Hattar K; Boyce BL; Abdeljawad F Nano Lett; 2024 Aug; 24(31):9627-9634. PubMed ID: 39072492 [TBL] [Abstract][Full Text] [Related]
13. Uniting tensile ductility with ultrahigh strength via composition undulation. Li H; Zong H; Li S; Jin S; Chen Y; Cabral MJ; Chen B; Huang Q; Chen Y; Ren Y; Yu K; Han S; Ding X; Sha G; Lian J; Liao X; Ma E; Sun J Nature; 2022 Apr; 604(7905):273-279. PubMed ID: 35418634 [TBL] [Abstract][Full Text] [Related]
14. A maximum in the strength of nanocrystalline copper. Schiøtz J; Jacobsen KW Science; 2003 Sep; 301(5638):1357-9. PubMed ID: 12958354 [TBL] [Abstract][Full Text] [Related]
15. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. Kobler A; Kashiwar A; Hahn H; Kübel C Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380 [TBL] [Abstract][Full Text] [Related]
16. Investigation of reorganization of a nanocrystalline grain boundary network during biaxial creep deformation of nanocrystalline Ni using molecular dynamics simulation. Pal S; Meraj M J Mol Model; 2019 Aug; 25(9):282. PubMed ID: 31468178 [TBL] [Abstract][Full Text] [Related]
17. In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum. Wang L; Du K; Yang C; Teng J; Fu L; Guo Y; Zhang Z; Han X Nat Commun; 2020 Mar; 11(1):1167. PubMed ID: 32127536 [TBL] [Abstract][Full Text] [Related]
18. Strategies to Achieve High Strength and Ductility of Pulsed Electrodeposited Nanocrystalline Co-Cu by Tuning the Deposition Parameters. Pratama K; Motz C Molecules; 2020 Nov; 25(21):. PubMed ID: 33171606 [TBL] [Abstract][Full Text] [Related]
19. Influence of Mo Segregation at Grain Boundaries on the High Temperature Creep Behavior of Ni-Mo Alloys: An Atomistic Study. Li Q; Zhang J; Tang H; Zhang H; Ye H; Zheng Y Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832367 [TBL] [Abstract][Full Text] [Related]