These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24205624)

  • 1. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.
    Lee JC; Lee S
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6179-82. PubMed ID: 24205624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simplified unified model for estimating the motion of magnetic nanoparticles within electrohydrodynamic field.
    Seo HS; Lee S; Lee JC
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8641-5. PubMed ID: 25958577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Study on Alternating Current Breakdown Mechanism Between Sphere-Sphere Electrodes in Transformer Oil-Based Magnetic Nanofluids.
    Lee WH; Lee JC
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6629-6634. PubMed ID: 29677848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.
    Rajnak M; Kurimsky J; Dolnik B; Kopcansky P; Tomasovicova N; Taculescu-Moaca EA; Timko M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032310. PubMed ID: 25314449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric Strength of Nanofluid-Impregnated Transformer Solid Insulation.
    Pérez-Rosa D; Montero A; García B; Burgos JC
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetophoresis of iron oxide nanoparticles at low field gradient: the role of shape anisotropy.
    Lim J; Yeap SP; Leow CH; Toh PY; Low SC
    J Colloid Interface Sci; 2014 May; 421():170-7. PubMed ID: 24594047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakdown and partial discharges in magnetic liquids.
    Herchl F; Marton K; Tomčo L; Kopčanský P; Timko M; Koneracká M; Kolcunová I
    J Phys Condens Matter; 2008 May; 20(20):204110. PubMed ID: 21694240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode polarization and unusual magnetodielectric effect in a transformer oil-based magnetic nanofluid thin layer.
    Rajnak M; Dolnik B; Kurimsky J; Cimbala R; Kopcansky P; Timko M
    J Chem Phys; 2017 Jan; 146(1):014704. PubMed ID: 28063423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field.
    Riggio C; Calatayud MP; Giannaccini M; Sanz B; Torres TE; Fernández-Pacheco R; Ripoli A; Ibarra MR; Dente L; Cuschieri A; Goya GF; Raffa V
    Nanomedicine; 2014 Oct; 10(7):1549-58. PubMed ID: 24407149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of dielectrophoresis-based particle collection from high conducting fluids due to partial electrode insulation.
    Luna R; Heineck D; Hinestrosa JP; Dobrovolskaia I; Hamilton S; Malakian A; Gustafson KT; Huynh KT; Kim S; Ware J; Stimson E; Ross C; Schutt CE; Ibsen SD
    Electrophoresis; 2023 Aug; 44(15-16):1234-1246. PubMed ID: 37431197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis.
    Gierhart BC; Howitt DG; Chen SJ; Smith RL; Collins SD
    Langmuir; 2007 Nov; 23(24):12450-6. PubMed ID: 17963407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of CeO
    Rahman O; Ali A; Hussain A; Khan SA; Tariq M; Urooj S; Mihet-Popa L; Khan Q
    Heliyon; 2023 Sep; 9(9):e19264. PubMed ID: 37662719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetophoretic assembly of flexible nanoparticles/lipid microfilaments.
    Bharti B; Fameau AL; Velev OD
    Faraday Discuss; 2015; 181():437-48. PubMed ID: 25920595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic dielectrophoresis model of multi-phase ionic fluids.
    Yan Y; Luo J; Guo D; Wen S
    PLoS One; 2015; 10(2):e0117456. PubMed ID: 25699513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging.
    Bertorelle F; Wilhelm C; Roger J; Gazeau F; Ménager C; Cabuil V
    Langmuir; 2006 Jun; 22(12):5385-91. PubMed ID: 16732667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia.
    Latorre M; Rinaldi C
    P R Health Sci J; 2009 Sep; 28(3):227-38. PubMed ID: 19715115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluidic dielectrophoresis: The polarization and displacement of electrical liquid interfaces.
    Mavrogiannis N; Desmond M; Gagnon ZR
    Electrophoresis; 2015 Jul; 36(13):1386-95. PubMed ID: 25523138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of Janus droplets and oil droplets in microchannels by wall-induced dielectrophoresis.
    Li M; Li D
    J Chromatogr A; 2017 Jun; 1501():151-160. PubMed ID: 28434715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocomposite magneto-rheological fluids with uniformly dispersed Fe nanoparticles.
    Poddar P; Wilson JL; Srikanth H; Yoo JH; Wereley NM; Kotha S; Barghouty L; Radhakrishnan R
    J Nanosci Nanotechnol; 2004; 4(1-2):192-6. PubMed ID: 15112566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous separation of colloidal particles using dielectrophoresis.
    Yunus NA; Nili H; Green NG
    Electrophoresis; 2013 Apr; 34(7):969-78. PubMed ID: 23436439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.