These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 24205629)
1. Fabrication of a silica nanocable using hydroxyl-group core-engineered filamentous virus. Kim YJ; Hwang KH; Park SJ; Jeon DY; Nam CH; Kim GT J Nanosci Nanotechnol; 2013 Sep; 13(9):6203-7. PubMed ID: 24205629 [TBL] [Abstract][Full Text] [Related]
2. Visualization of Engineered M13 Phages Bound to Bacterial Targets by Transmission Electron Microscopy. Yang Y; Chen IA Methods Mol Biol; 2024; 2793():175-183. PubMed ID: 38526731 [TBL] [Abstract][Full Text] [Related]
3. Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber. Szot-Karpińska K; Golec P; Leśniewski A; Pałys B; Marken F; Niedziółka-Jönsson J; Węgrzyn G; Łoś M Bioconjug Chem; 2016 Dec; 27(12):2900-2910. PubMed ID: 27748604 [TBL] [Abstract][Full Text] [Related]
4. Construction of genetically engineered M13K07 helper phage for simultaneous phage display of gold binding peptide 1 and nuclear matrix protein 22 ScFv antibody. Fatemi F; Amini SM; Kharrazi S; Rasaee MJ; Mazlomi MA; Asadi-Ghalehni M; Rajabibazl M; Sadroddiny E Colloids Surf B Biointerfaces; 2017 Nov; 159():770-780. PubMed ID: 28886513 [TBL] [Abstract][Full Text] [Related]
5. Cell-Adhesive Matrices Composed of RGD Peptide-Displaying M13 Bacteriophage/Poly(lactic-co-glycolic acid) Nanofibers Beneficial to Myoblast Differentiation. Shin YC; Lee JH; Jin L; Kim MJ; Kim C; Hong SW; Oh JW; Han DW J Nanosci Nanotechnol; 2015 Oct; 15(10):7907-12. PubMed ID: 26726438 [TBL] [Abstract][Full Text] [Related]
6. Antigen-Antibody Interaction-Based Self-Healing Capability of Hybrid Hydrogels Composed of Genetically Engineered Filamentous Viruses and Gold Nanoparticles. Sawada T; Serizawa T Protein Pept Lett; 2018; 25(1):64-67. PubMed ID: 29237366 [TBL] [Abstract][Full Text] [Related]
7. M13 bacteriophage displaying DOPA on surfaces: fabrication of various nanostructured inorganic materials without time-consuming screening processes. Park JP; Do M; Jin HE; Lee SW; Lee H ACS Appl Mater Interfaces; 2014; 6(21):18653-60. PubMed ID: 25317741 [TBL] [Abstract][Full Text] [Related]
8. Trivalent Cation Induced Bundle Formation of Filamentous fd Phages. Korkmaz Zirpel N; Park EJ Macromol Biosci; 2015 Sep; 15(9):1262-73. PubMed ID: 25988334 [TBL] [Abstract][Full Text] [Related]
9. Adsorption and self-assembly of M13 phage into directionally organized structures on C and SiO2 films. Moghimian P; Srot V; Rothenstein D; Facey SJ; Harnau L; Hauer B; Bill J; van Aken PA Langmuir; 2014 Sep; 30(38):11428-32. PubMed ID: 25195499 [TBL] [Abstract][Full Text] [Related]
10. Bacteriophage Engineering for Improved Copper Ion Binding. Korkmaz N; Himawan S; Usman M; Baik S; Kim M Macromol Biosci; 2024 Apr; 24(4):e2300354. PubMed ID: 37985183 [TBL] [Abstract][Full Text] [Related]
11. Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials. Jin HE; Lee SW Methods Mol Biol; 2018; 1776():487-502. PubMed ID: 29869262 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of core-shell nanostructures of Co3O4@SiO2 with controlled shell thickness (5-20 nm) and hollow shells of silica. Vaidya S; Thaplyal P; Ramanujachary KV; Lofland SE; Ganguli AK J Nanosci Nanotechnol; 2011 Apr; 11(4):3405-13. PubMed ID: 21776717 [TBL] [Abstract][Full Text] [Related]
13. Programmable assembly of nanoarchitectures using genetically engineered viruses. Huang Y; Chiang CY; Lee SK; Gao Y; Hu EL; De Yoreo J; Belcher AM Nano Lett; 2005 Jul; 5(7):1429-34. PubMed ID: 16178252 [TBL] [Abstract][Full Text] [Related]
14. Genetically Induced In Situ-Poling for Piezo-Active Biohybrid Nanowires. Kilper S; Jahnke T; Aulich M; Burghard Z; Rothenstein D; Bill J Adv Mater; 2019 Feb; 31(6):e1805597. PubMed ID: 30548703 [TBL] [Abstract][Full Text] [Related]
15. One-step synthesis of monodisperse and hierarchically mesostructured silica particles with a thin shell. Chen H; Hu T; Zhang X; Huo K; Chu PK; He J Langmuir; 2010 Aug; 26(16):13556-63. PubMed ID: 20695604 [TBL] [Abstract][Full Text] [Related]
16. Assembly of multimeric phage nanostructures through leucine zipper interactions. Sweeney RY; Park EY; Iverson BL; Georgiou G Biotechnol Bioeng; 2006 Oct; 95(3):539-45. PubMed ID: 16897782 [TBL] [Abstract][Full Text] [Related]
17. Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid material. Lee SK; Yun DS; Belcher AM Biomacromolecules; 2006 Jan; 7(1):14-7. PubMed ID: 16398491 [TBL] [Abstract][Full Text] [Related]
18. Controlling nanostructures of mesoporous silica fibers by supramolecular assembly of genetically modifiable bacteriophages. Mao C; Wang F; Cao B Angew Chem Int Ed Engl; 2012 Jun; 51(26):6411-5. PubMed ID: 22644619 [TBL] [Abstract][Full Text] [Related]
19. Graphene sheets stabilized on genetically engineered M13 viral templates as conducting frameworks for hybrid energy-storage materials. Oh D; Dang X; Yi H; Allen MA; Xu K; Lee YJ; Belcher AM Small; 2012 Apr; 8(7):1006-11. PubMed ID: 22337601 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic self-templating optical structures fabricated by genetically engineered M13 bacteriophage. Kim WG; Song H; Kim C; Moon JS; Kim K; Lee SW; Oh JW Biosens Bioelectron; 2016 Nov; 85():853-859. PubMed ID: 27295572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]