These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24205640)

  • 1. Monte Carlo study on the self-assembly of nanoparticles into a nanorod structure.
    Matin MA; Kim H; Saha JK; Zhang Z; Kim J; Jang J
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6254-8. PubMed ID: 24205640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte carlo computer simulation of chain formation from nanoparticles.
    Sinyagin AY; Belov A; Tang Z; Kotov NA
    J Phys Chem B; 2006 Apr; 110(14):7500-7. PubMed ID: 16599530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the anisotropic self-assembly of polybutadiene-grafted silica nanoparticles by tuning three-body interaction forces.
    Di Credico B; Odriozola G; Mascotto S; Meyer A; Tripaldi L; Moncho-Jordá A
    Soft Matter; 2022 Oct; 18(41):8034-8045. PubMed ID: 36226549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional assemblies of charged nanoparticles in water: A simulation study.
    Richardi J
    J Chem Phys; 2009 Jan; 130(4):044701. PubMed ID: 19191398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The study on size dependent dipole-dipole interaction in the self-assembly of twisting nanoribbons with circular polarization activation.
    Yan B; Ma C; Lv B; Zhu J; Li Y; Cai P; Gao F; Ye Z; Sui C; Cheng G; Lin Q; Wu X; Shi Y
    Nanotechnology; 2019 Sep; 30(38):385602. PubMed ID: 31216513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of CdTe nanoparticles into dendrite structure: a microsensor to Hg2+.
    Sun H; Wei H; Zhang H; Ning Y; Tang Y; Zhai F; Yang B
    Langmuir; 2011 Feb; 27(3):1136-42. PubMed ID: 21192701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembly Mechanism of Complex Corrugated Particles.
    Tang L; Vo T; Fan X; Vecchio D; Ma T; Lu J; Hou H; Glotzer SC; Kotov NA
    J Am Chem Soc; 2021 Dec; 143(47):19655-19667. PubMed ID: 34784206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic Self-Assembly of Hairy Inorganic Nanoparticles.
    Yi C; Zhang S; Webb KT; Nie Z
    Acc Chem Res; 2017 Jan; 50(1):12-21. PubMed ID: 27997119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper sulfide self-assembly architectures with improved photothermal performance.
    Bu X; Zhou D; Li J; Zhang X; Zhang K; Zhang H; Yang B
    Langmuir; 2014 Feb; 30(5):1416-23. PubMed ID: 24446661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between Short- and Long-Ranged Forces Leading to the Formation of Ag Nanoparticle Superlattice.
    Lee J; Nakouzi E; Xiao D; Wu Z; Song M; Ophus C; Chun J; Li D
    Small; 2019 Aug; 15(33):e1901966. PubMed ID: 31225719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring Anisotropic Interactions between Soft Nanospheres Using Dense Arrays of Smectic Liquid Crystal Edge Dislocations.
    Coursault D; Blach JF; Grand J; Coati A; Vlad A; Zappone B; Babonneau D; Lévi G; Félidj N; Donnio B; Gallani JL; Alba M; Garreau Y; Borensztein Y; Goldmann M; Lacaze E
    ACS Nano; 2015 Dec; 9(12):11678-89. PubMed ID: 26521895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-strand DNA-nanorod conjugates - tunable anisotropic colloids for on-demand self-assembly.
    Sutter E; Zhang B; Sutter P
    J Colloid Interface Sci; 2021 Mar; 586():847-854. PubMed ID: 33198983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directing semiconductor nanorod assembly into 1D or 2D supercrystals by altering the surface charge.
    Singh A; Gunning RD; Sanyal A; Ryan KM
    Chem Commun (Camb); 2010 Oct; 46(38):7193-5. PubMed ID: 20717602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric van der Waals forces drive orientation of compositionally anisotropic nanocylinders within smectic arrays: experiment and simulation.
    Smith BD; Fichthorn KA; Kirby DJ; Quimby LM; Triplett DA; González P; Hernández D; Keating CD
    ACS Nano; 2014 Jan; 8(1):657-70. PubMed ID: 24308771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Large-Scale Assembly and Pattern Transfer of One-Dimensional Gold Nanorod Superstructures.
    Ashkar R; Hore MJA; Ye X; Natarajan B; Greybush NJ; Lam T; Kagan CR; Murray CB
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25513-25521. PubMed ID: 28686407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembly of Polymer Blends and Nanoparticles through Rapid Solvent Exchange.
    Li N; Nikoubashman A; Panagiotopoulos AZ
    Langmuir; 2019 Mar; 35(10):3780-3789. PubMed ID: 30759987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires.
    Srivastava S; Kotov NA
    Acc Chem Res; 2008 Dec; 41(12):1831-41. PubMed ID: 19053241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.