These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24205664)

  • 21. The evaluation of the micro-tracks and micro-dimples on the tribological characteristics of thrust ball bearings.
    Amanov A; Pyoun YS; Cho IS; Lee CS; Park IG
    J Nanosci Nanotechnol; 2011 Jan; 11(1):701-5. PubMed ID: 21446527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasonic Nanocrystal Surface Modification: Processes, Characterization, Properties, and Applications.
    Kishore A; John M; Ralls AM; Jose SA; Kuruveri UB; Menezes PL
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Better Surface Integrity and Tribological Properties of Steel Sintered by Powder Metallurgy.
    Lim TH; Lee CS; Cho IS; Amanov A
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical and Tribological Characteristics of Cladded AISI 1045 Carbon Steel.
    Karimbaev R; Choi S; Pyun YS; Amanov A
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32074946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatigue behavior of zirconia-ceramic, galvano-ceramic, and porcelain-fused-to-metal fixed partial dentures.
    Eroğlu Z; Gurbulak AG
    J Prosthodont; 2013 Oct; 22(7):516-522. PubMed ID: 23735078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Ultrasonic Nanocrystal Surface Modification on the Microstructure and Martensitic Transformation of Selective Laser Melted Nitinol.
    Biffi CA; Bassani P; Nematollahi M; Shayesteh Moghaddam N; Amerinatanzi A; Mahtabi MJ; Elahinia M; Tuissi A
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31547164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Molybdenum Addition on Rolling Contact Fatigue of Locomotive Wheels under Rolling-Sliding Condition.
    Wang Y; Xiang P; Ding H; Wang W; Zou Q; Liu X; Guo J; Liu Q
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32992831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Ultrasonic Surface Impact on the Fatigue Properties of Ti3Zr2Sn3Mo25Nb.
    Cheng Z; Cao X; Xu X; Shen Q; Yu T; Jin J
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rotating Bending Fatigue Behaviors of C17200 Beryllium Copper Alloy at High Temperatures.
    Lai F; Mao K; Cao C; Hu A; Tu J; Lin Y
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Pre- and Post-Carburizing Surface Modification on the Tribological and Adhesion Properties of Heat-Resistant KHR 45A Steel for Cracking Tubes.
    Amanov A; Choi JH; Pyun YS
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatigue limits and SEM/TEM observations of fracture characteristics for three Pd-Ag dental casting alloys.
    Li D; Brantley WA; Guo W; Clark WA; Alapati SB; Heshmati RH; Daehn GS
    J Mater Sci Mater Med; 2007 Jan; 18(1):119-25. PubMed ID: 17200821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue.
    Ye J; Gao Y
    J Endod; 2012 Jan; 38(1):105-7. PubMed ID: 22152631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Fine Grains on the Bending Fatigue Behavior of Two Implant Titanium Alloys.
    Cao X; Zhu J; Gao F; Gao Z
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of ultrasonic nanocrystalline surface modification on the high-frequency fretting wear behavior of AISI304 steel.
    Cho IS; Lee CS; Amanov A; Pyoun YS; Park IG
    J Nanosci Nanotechnol; 2011 Jan; 11(1):742-6. PubMed ID: 21446536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fatigue testing of a NiTi rotary instrument. Part 2: Fractographic analysis.
    Cheung GS; Darvell BW
    Int Endod J; 2007 Aug; 40(8):619-25. PubMed ID: 17511786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue Life Assessment of Rolling Bearings Made from AISI 52100 Bearing Steel.
    Romanowicz PJ; Szybiński B
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30682863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fatigue resistance of cast occlusal rests using Co-Cr and Ag-Pd-Cu-Au alloys.
    Gapido CG; Kobayashi H; Miyakawa O; Kohno S
    J Prosthet Dent; 2003 Sep; 90(3):261-9. PubMed ID: 12942060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols.
    Guilherme AS; Henriques GE; Zavanelli RA; Mesquita MF
    J Prosthet Dent; 2005 Apr; 93(4):378-85. PubMed ID: 15798689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fracture resistance of dental nickel-titanium rotary instruments with novel surface treatment: Thin film metallic glass coating.
    Chi CW; Deng YL; Lee JW; Lin CP
    J Formos Med Assoc; 2017 May; 116(5):373-379. PubMed ID: 27502895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatigue in an AZ31 Alloy Subjected to Rotary Swaging.
    Trojanová Z; Drozd Z; Halmešová K; Džugan J; Hofrichterová T; Palček P; Minárik P; Škraban T; Nový F
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.