These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24205664)

  • 41. Fatigue strength of Co-Cr-Mo alloy clasps prepared by selective laser melting.
    Kajima Y; Takaichi A; Nakamoto T; Kimura T; Yogo Y; Ashida M; Doi H; Nomura N; Takahashi H; Hanawa T; Wakabayashi N
    J Mech Behav Biomed Mater; 2016 Jun; 59():446-458. PubMed ID: 26974490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of the microstructure and phase stability of as-cast, CAD/CAM and powder metallurgy manufactured Co-Cr dental alloys.
    Li KC; Prior DJ; Waddell JN; Swain MV
    Dent Mater; 2015 Dec; 31(12):e306-15. PubMed ID: 26597769
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fatigue Life of Aluminum Alloys Based on Shear and Hydrostatic Strain.
    Łagoda T; Głowacka K; Kurek A
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138233
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fatigue performance evaluation of a Nickel-free titanium-based alloy for biomedical application - Effect of thermomechanical treatments.
    Mussot-Hoinard G; Elmay W; Peltier L; Laheurte P
    J Mech Behav Biomed Mater; 2017 Jul; 71():32-42. PubMed ID: 28259783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High compressive pre-strains reduce the bending fatigue life of nitinol wire.
    Gupta S; Pelton AR; Weaver JD; Gong XY; Nagaraja S
    J Mech Behav Biomed Mater; 2015 Apr; 44():96-108. PubMed ID: 25625888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improvement of Fatigue Life of GH3039 Superalloy by Laser Shock Peening.
    Tang Y; Ge M; Zhang Y; Wang T; Zhou W
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32878304
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanoskin® Subcutaneous Implant in Guinea Pigs.
    Kaminagakura KN; Sato SS; Sugino P; Santos DC; Kataki L; Padovani CR; Basmaji P; Schellini SA
    Ophthalmic Plast Reconstr Surg; 2018; 34(2):136-139. PubMed ID: 28296654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of Mechanical Properties and Fatigue Life of Microturbine Angular Contact Ball Bearings under Eccentric Load Conditions.
    Wang H; Lv H; Luo Z
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177706
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-Cycle Fatigue Behaviour of the Aluminium Alloy 5083-H111.
    Nečemer B; Zupanič F; Vuherer T; Glodež S
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048978
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bending Fatigue Behaviour and Fatigue Endurance Limit Prediction of 20Cr2Ni4A Gear Steel after the Ultrasonic Surface Rolling Process.
    Wang Z; Huang Y; Xing Z; Wang H; Shan D; Xie F; Li J
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066257
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermal Desorption Analysis of Hydrogen in Non-hydrogen-Charged Rolling Contact Fatigue-Tested 100Cr6 Steel.
    Richardson AD; Evans MH; Wang L; Wood RJK; Ingram M
    Tribol Lett; 2018; 66(1):4. PubMed ID: 31983860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cyclic fatigue and fracture characteristics of ground and twisted nickel-titanium rotary files.
    Kim HC; Yum J; Hur B; Cheung GS
    J Endod; 2010 Jan; 36(1):147-52. PubMed ID: 20003955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low-cycle fatigue of rotary NiTi endodontic instruments in hypochlorite solution.
    Cheung GS; Darvell BW
    Dent Mater; 2008 Jun; 24(6):753-9. PubMed ID: 17996288
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Multiscale Overview of Modelling Rolling Cyclic Fatigue in Bearing Elements.
    Abdullah MU; Khan ZA
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079267
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Fatigue properties of dental alloys. 12% Au-Pd-Ag alloy and type III gold alloy].
    Kato H
    Aichi Gakuin Daigaku Shigakkai Shi; 1989 Dec; 27(4):1017-27. PubMed ID: 2489466
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Failure behavior of plasma-sprayed HAp coating on commercially pure titanium substrate in simulated body fluid (SBF) under bending load.
    Laonapakul T; Rakngarm Nimkerdphol A; Otsuka Y; Mutoh Y
    J Mech Behav Biomed Mater; 2012 Nov; 15():153-66. PubMed ID: 23032435
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Evolution of White Etching Cracks (WECs) in Rolling Contact Fatigue-Tested 100Cr6 Steel.
    Richardson AD; Evans MH; Wang L; Wood RJK; Ingram M; Meuth B
    Tribol Lett; 2018; 66(1):6. PubMed ID: 31983861
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of the applied load on surface contact fatigue of dental filling materials.
    Fujii K; Carrick TE; Bicker R; McCabe JF
    Dent Mater; 2004 Dec; 20(10):931-8. PubMed ID: 15501321
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The fatigue strength of porous-coated Ti-6%Al-4%V implant alloy.
    Yue S; Pilliar RM; Weatherly GC
    J Biomed Mater Res; 1984; 18(9):1043-58. PubMed ID: 6544792
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonlinear ultrasonic characterization of early degradation of fatigued Al6061-T6 with harmonic generation technique.
    Gebrekidan SB; Kang T; Kim HJ; Song SJ
    Ultrasonics; 2018 Apr; 85():23-30. PubMed ID: 29307621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.