BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 24205821)

  • 1. Multidimensional profiling platforms reveal metabolic dysregulation caused by organophosphorus pesticides.
    Medina-Cleghorn D; Heslin A; Morris PJ; Mulvihill MM; Nomura DK
    ACS Chem Biol; 2014 Feb; 9(2):423-32. PubMed ID: 24205821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-based protein profiling of organophosphorus and thiocarbamate pesticides reveals multiple serine hydrolase targets in mouse brain.
    Nomura DK; Casida JE
    J Agric Food Chem; 2011 Apr; 59(7):2808-15. PubMed ID: 21341672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights on molecular interactions of organophosphorus pesticides with esterases.
    Mangas I; Estevez J; Vilanova E; França TC
    Toxicology; 2017 Feb; 376():30-43. PubMed ID: 27311923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection, quantification, and microlocalisation of targets of pesticides using microchannel plate autoradiographic imagers.
    Tarhoni MH; Vigneswara V; Smith M; Anderson S; Wigmore P; Lees JE; Ray DE; Carter WG
    Molecules; 2011 Oct; 16(10):8535-51. PubMed ID: 21989313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione S-transferase conjugation of organophosphorus pesticides yields S-phospho-, S-aryl-, and S-alkylglutathione derivatives.
    Fujioka K; Casida JE
    Chem Res Toxicol; 2007 Aug; 20(8):1211-7. PubMed ID: 17645302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organophosphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia.
    Morris PJ; Medina-Cleghorn D; Heslin A; King SM; Orr J; Mulvihill MM; Krauss RM; Nomura DK
    ACS Chem Biol; 2014 May; 9(5):1097-103. PubMed ID: 24597639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of biomarkers of organophosphorus exposures in humans.
    Kim JH; Stevens RC; MacCoss MJ; Goodlett DR; Scherl A; Richter RJ; Suzuki SM; Furlong CE
    Adv Exp Med Biol; 2010; 660():61-71. PubMed ID: 20221871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated molecular docking and rescoring method for predicting the sensitivity spectrum of various serine hydrolases to organophosphorus pesticides.
    Yang LL; Yang X; Li GB; Fan KG; Yin PF; Chen XG
    J Sci Food Agric; 2016 Apr; 96(6):2184-92. PubMed ID: 26172068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping Proteome-Wide Targets of Environmental Chemicals Using Reactivity-Based Chemoproteomic Platforms.
    Medina-Cleghorn D; Bateman LA; Ford B; Heslin A; Fisher KJ; Dalvie ED; Nomura DK
    Chem Biol; 2015 Oct; 22(10):1394-405. PubMed ID: 26496688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Household organophosphorus pesticide use and Parkinson's disease.
    Narayan S; Liew Z; Paul K; Lee PC; Sinsheimer JS; Bronstein JM; Ritz B
    Int J Epidemiol; 2013 Oct; 42(5):1476-85. PubMed ID: 24057998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serine hydrolase targets of organophosphorus toxicants.
    Casida JE; Quistad GB
    Chem Biol Interact; 2005 Dec; 157-158():277-83. PubMed ID: 16243304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic-Molecule-Based Fluorescent Chemosensor for Nerve Agents and Organophosphorus Pesticides.
    Gori M; Thakur A; Sharma A; Flora SJS
    Top Curr Chem (Cham); 2021 Aug; 379(5):33. PubMed ID: 34346011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systems-level approach for investigating organophosphorus pesticide toxicity.
    Zhu J; Wang J; Ding Y; Liu B; Xiao W
    Ecotoxicol Environ Saf; 2018 Mar; 149():26-35. PubMed ID: 29149660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of soil acidification on the toxicity of organophosphorus pesticide on Eisenia fetida and its mechanism.
    Zou X; Xiao X; Zhou H; Chen F; Zeng J; Wang W; Feng G; Huang X
    J Hazard Mater; 2018 Oct; 359():365-372. PubMed ID: 30048951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paraoxonase 1 (PON1) modulates the toxicity of mixed organophosphorus compounds.
    Jansen KL; Cole TB; Park SS; Furlong CE; Costa LG
    Toxicol Appl Pharmacol; 2009 Apr; 236(2):142-53. PubMed ID: 19371602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic efficiencies of directly evolved phosphotriesterase variants with structurally different organophosphorus compounds in vitro.
    Goldsmith M; Eckstein S; Ashani Y; Greisen P; Leader H; Sussman JL; Aggarwal N; Ovchinnikov S; Tawfik DS; Baker D; Thiermann H; Worek F
    Arch Toxicol; 2016 Nov; 90(11):2711-2724. PubMed ID: 26612364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of adducted butyrylcholinesterase for biomonitoring organophosphorus exposures.
    Marsillach J; Hsieh EJ; Richter RJ; MacCoss MJ; Furlong CE
    Chem Biol Interact; 2013 Mar; 203(1):85-90. PubMed ID: 23123252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes.
    Czajka M; Matysiak-Kucharek M; Jodłowska-Jędrych B; Sawicki K; Fal B; Drop B; Kruszewski M; Kapka-Skrzypczak L
    Environ Res; 2019 Nov; 178():108685. PubMed ID: 31479978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicological assessment of isomeric pesticides: a strategy for testing of chiral organophosphorus (OP) compounds for delayed polyneuropathy in a regulatory setting.
    Battershill JM; Edwards PM; Johnson MK
    Food Chem Toxicol; 2004 Aug; 42(8):1279-85. PubMed ID: 15207378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticonvulsant discovery through animal models of status epilepticus induced by organophosphorus nerve agents and pesticides.
    McCarren HS; McDonough JH
    Ann N Y Acad Sci; 2016 Jun; 1374(1):144-50. PubMed ID: 27258770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.