These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24205893)

  • 21. Time to be versatile: regulation of the replication timing program in budding yeast.
    Yoshida K; Poveda A; Pasero P
    J Mol Biol; 2013 Nov; 425(23):4696-705. PubMed ID: 24076190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A DNA replication origin and a replication fork barrier used in vivo in the circular plasmid pKD1.
    Fabiani L; Irene C; Aragona M; Newlon CS
    Mol Genet Genomics; 2001 Oct; 266(2):326-35. PubMed ID: 11683276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ease of DNA unwinding is a conserved property of yeast replication origins.
    Natale DA; Umek RM; Kowalski D
    Nucleic Acids Res; 1993 Feb; 21(3):555-60. PubMed ID: 8441667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An origin of replication and a centromere are both needed to establish a replicative plasmid in the yeast Yarrowia lipolytica.
    Vernis L; Abbas A; Chasles M; Gaillardin CM; Brun C; Huberman JA; Fournier P
    Mol Cell Biol; 1997 Apr; 17(4):1995-2004. PubMed ID: 9121447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drosophila scaffold-attached regions bind nuclear scaffolds and can function as ARS elements in both budding and fission yeasts.
    Amati B; Gasser SM
    Mol Cell Biol; 1990 Oct; 10(10):5442-54. PubMed ID: 2118998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scalable protein production by Komagataella phaffii enabled by ARS plasmids and carbon source-based selection.
    Weiss F; Requena-Moreno G; Pichler C; Valero F; Glieder A; Garcia-Ortega X
    Microb Cell Fact; 2024 Apr; 23(1):116. PubMed ID: 38643119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The inefficient replication origin from yeast ribosomal DNA is naturally impaired in the ARS consensus sequence and in DNA unwinding.
    Miller CA; Umek RM; Kowalski D
    Nucleic Acids Res; 1999 Oct; 27(19):3921-30. PubMed ID: 10481032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short DNA fragments without sequence similarity are initiation sites for replication in the chromosome of the yeast Yarrowia lipolytica.
    Vernis L; Chasles M; Pasero P; Lepingle A; Gaillardin C; Fournier P
    Mol Biol Cell; 1999 Mar; 10(3):757-69. PubMed ID: 10069816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ARS sequences in homologous and heterologous ADE2 loci are capable of promoting autonomous replication of plasmids in Schwanniomyces occidentalis.
    Janatova I; Gourdon P; Meilhoc E; Klein RD; Masson JM
    Curr Genet; 2000 May; 37(5):298-303. PubMed ID: 10853766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Titration of replication activity by increasing ARS dosage in yeast plasmids.
    Hyman BC; Garcia-Garcia F
    Curr Genet; 1993 Feb; 23(2):141-7. PubMed ID: 8431955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Tetrahymena ARS sequence function in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Luehrsen KR; Pearlman RE; Pata J; Orias E
    Curr Genet; 1988 Sep; 14(3):225-33. PubMed ID: 3058332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping autonomously replicating sequence elements in a 73-kb region of chromosome II of the fission yeast, Schizosaccharomyces pombe.
    Srivastava VK; Dubey DD
    J Genet; 2007 Aug; 86(2):139-48. PubMed ID: 17968141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromosomal context and replication properties of ARS plasmids in Schizosaccharomyces pombe.
    Pratihar AS; Tripathi VP; Yadav MP; Dubey DD
    J Biosci; 2015 Dec; 40(5):845-53. PubMed ID: 26648030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Formation of ARS-independent miniplasmids upon transformation of yeast Pichia methanolica with DNA molecules containing "transforming" and "nontransforming" genes].
    Tarutina MG; Tolstorukov II
    Genetika; 2002 Nov; 38(11):1451-62. PubMed ID: 12500670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The function of the nuclear matrix attachment region of silkworm rDNA as an autonomously replicating sequence in plasmid and chromosomal replication origin in yeast.
    Chen Y; Zhao M; Li ZP; He ML
    Biochem Biophys Res Commun; 2002 Dec; 299(5):723-9. PubMed ID: 12470638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a predominant replication origin in fission yeast.
    Okuno Y; Okazaki T; Masukata H
    Nucleic Acids Res; 1997 Feb; 25(3):530-7. PubMed ID: 9016592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Random AT library: autonomously replicating sequence (ARS) activity of chemically synthesized random sequences for transformation of nonconventional yeast species.
    Fukuhara H
    FEMS Yeast Res; 2006 Dec; 6(8):1281-7. PubMed ID: 17156025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Context-dependent modulation of replication activity of Saccharomyces cerevisiae autonomously replicating sequences by transcription factors.
    Kohzaki H; Ito Y; Murakami Y
    Mol Cell Biol; 1999 Nov; 19(11):7428-35. PubMed ID: 10523631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel autonomously replicating sequence (ARS) for multiple integration in the yeast Hansenula polymorpha DL-1.
    Sohn JH; Choi ES; Kim CH; Agaphonov MO; Ter-Avanesyan MD; Rhee JS; Rhee SK
    J Bacteriol; 1996 Aug; 178(15):4420-8. PubMed ID: 8755868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The replication behavior of Saccharomyces cerevisiae DNA in human cells.
    Tran CT; Caddle MS; Calos MP
    Chromosoma; 1993 Jan; 102(2):129-36. PubMed ID: 8432194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.