These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24206019)

  • 1. Electrocatalytic features of a heme protein attached to polymer-functionalized magnetic nanoparticles.
    Krishnan S; Walgama C
    Anal Chem; 2013 Dec; 85(23):11420-6. PubMed ID: 24206019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of myoglobin layer-by-layer films with poly(propyleneimine) dendrimer-stabilized gold nanoparticles and its application in electrochemical biosensing.
    Zhang H; Hu N
    Biosens Bioelectron; 2007 Oct; 23(3):393-9. PubMed ID: 17561388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes.
    Zhang H; Lu H; Hu N
    J Phys Chem B; 2006 Feb; 110(5):2171-9. PubMed ID: 16471801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct electrochemistry and electrocatalysis of heme proteins immobilised in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide composite films in room-temperature ionic liquids.
    Wang T; Wang L; Tu J; Xiong H; Wang S
    Bioelectrochemistry; 2013 Dec; 94():94-9. PubMed ID: 23632434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of Au nanoparticles formed by in situ electrodeposition on direct electrochemistry of myoglobin loaded into layer-by-layer films of chitosan and silica nanoparticles.
    Guo X; Zheng D; Hu N
    J Phys Chem B; 2008 Dec; 112(48):15513-20. PubMed ID: 19006267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive effect of gold nanoparticles encapsulated inside polyamidoamine (PAMAM) dendrimers on electrochemistry of myoglobin (Mb) in {PAMAM-Au/Mb}(n) layer-by-layer films.
    Zhang H; Hu N
    J Phys Chem B; 2007 Sep; 111(35):10583-90. PubMed ID: 17696471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative bioelectrochemical study of core-shell nanocluster films with ordinary layer-by-layer films containing heme proteins and CaCO3 nanoparticles.
    Liu H; Hu N
    J Phys Chem B; 2005 May; 109(20):10464-73. PubMed ID: 16852268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan.
    Feng JJ; Zhao G; Xu JJ; Chen HY
    Anal Biochem; 2005 Jul; 342(2):280-6. PubMed ID: 15950909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of organic-film morphology on the efficient electron transfer at passivated polymer-modified electrodes to which nanoparticles are attached.
    Barfidokht A; Ciampi S; Luais E; Darwish N; Gooding JJ
    Chemphyschem; 2013 Jul; 14(10):2190-7. PubMed ID: 23585214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt-induced swelling and electrochemical property change of hyaluronic acid/myoglobin multilayer films.
    Lu H; Hu N
    J Phys Chem B; 2007 Mar; 111(8):1984-93. PubMed ID: 17274644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electron transfer and electrocatalysis of myoglobin loaded in layer-by-layer films assembled with nonionic poly(ethylene glycol) and ZrO(2) nanoparticles.
    Qiao K; Hu N
    Bioelectrochemistry; 2009 Apr; 75(1):71-6. PubMed ID: 19188096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroactive core-shell nanocluster films of heme proteins, polyelectrolytes, and silica nanoparticles.
    Liu H; Rusling JF; Hu N
    Langmuir; 2004 Nov; 20(24):10700-5. PubMed ID: 15544404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myoglobin-loaded layer-by-layer films containing SiO(2) nanoparticles studied using electrochemistry.
    Guo X; Zhang H; Hu N
    Nanotechnology; 2008 Feb; 19(5):055709. PubMed ID: 21817623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrochemistry and electrocatalytic characteristic of heme proteins immobilized in a new sol-gel polymer film.
    Sun YX; Wang SF
    Bioelectrochemistry; 2007 Nov; 71(2):172-9. PubMed ID: 17524971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of Fe(3)O(4)@Al(2)O(3) core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry.
    Peng HP; Liang RP; Qiu JD
    Biosens Bioelectron; 2011 Feb; 26(6):3005-11. PubMed ID: 21185712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiC nanoparticles-chitosan composite film for the direct electron transfer of myoglobin and its application in biosensing.
    Wang M; Sheng Q; Zhang D; He Y; Zheng J
    Bioelectrochemistry; 2012 Aug; 86():46-53. PubMed ID: 22349003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electrochemistry and electrochemical catalysis of myoglobin-TiO2 coated multiwalled carbon nanotubes modified electrode.
    Zhang L; Tian DB; Zhu JJ
    Bioelectrochemistry; 2008 Nov; 74(1):157-63. PubMed ID: 18722825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules.
    Nassar AE; Willis WS; Rusling JF
    Anal Chem; 1995 Jul; 67(14):2386-92. PubMed ID: 8686876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electrochemistry and electrocatalysis of heme proteins on SWCNTs-CTAB modified electrodes.
    Wang S; Xie F; Liu G
    Talanta; 2009 Feb; 77(4):1343-50. PubMed ID: 19084647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and catalytic behavior of myoglobin adsorbed onto nanosized hydrotalcites.
    Bellezza F; Cipiciani A; Latterini L; Posati T; Sassi P
    Langmuir; 2009 Sep; 25(18):10918-24. PubMed ID: 19735144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.