BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24206079)

  • 1. Polymer functionalization as a powerful tool to improve scaffold performances.
    Rossi F; van Griensven M
    Tissue Eng Part A; 2014 Aug; 20(15-16):2043-51. PubMed ID: 24206079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric scaffolds as stem cell carriers in bone repair.
    Rossi F; Santoro M; Perale G
    J Tissue Eng Regen Med; 2015 Oct; 9(10):1093-119. PubMed ID: 24668819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility.
    Oh SH; Lee JH
    Biomed Mater; 2013 Feb; 8(1):014101. PubMed ID: 23472257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces.
    Son J; Kim G
    J Biomater Sci Polym Ed; 2009; 20(14):2089-101. PubMed ID: 19874679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin.
    Koh HS; Yong T; Chan CK; Ramakrishna S
    Biomaterials; 2008 Sep; 29(26):3574-82. PubMed ID: 18533251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer-based composite scaffolds for tissue engineering.
    Gloria A; De Santis R; Ambrosio L
    J Appl Biomater Biomech; 2010; 8(2):57-67. PubMed ID: 20740467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospinning Functionalized Polymers for Use as Tissue Engineering Scaffolds.
    Chow LW
    Methods Mol Biol; 2018; 1758():27-39. PubMed ID: 29679320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of scaffold degradation in tissue engineering: a review.
    Zhang H; Zhou L; Zhang W
    Tissue Eng Part B Rev; 2014 Oct; 20(5):492-502. PubMed ID: 24547761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective laser sintering of biocompatible polymers for applications in tissue engineering.
    Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE
    Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell culture in autologous fibrin scaffolds for applications in tissue engineering.
    de la Puente P; Ludeña D
    Exp Cell Res; 2014 Mar; 322(1):1-11. PubMed ID: 24378385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering.
    Järvinen E; Muhonen V; Haaparanta AM; Kellomäki M; Kiviranta I
    Biomed Mater Eng; 2014; 24(3):1549-53. PubMed ID: 24840193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation.
    Alves da Silva ML; Crawford A; Mundy JM; Correlo VM; Sol P; Bhattacharya M; Hatton PV; Reis RL; Neves NM
    Acta Biomater; 2010 Mar; 6(3):1149-57. PubMed ID: 19788942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.
    Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E
    Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailorable acrylate-endcapped urethane-based polymers for precision in digital light processing: Versatile solutions for biomedical applications.
    Pien N; Deroose N; Meeremans M; Perneel C; Popovici CŞ; Dubruel P; De Schauwer C; Van Vlierberghe S
    Biomater Adv; 2024 Sep; 162():213923. PubMed ID: 38875803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of polymer networks with bone sialoprotein promotes cell attachment and spreading.
    Chan WD; Goldberg HA; Hunter GK; Dixon SJ; Rizkalla AS
    J Biomed Mater Res A; 2010 Sep; 94(3):945-52. PubMed ID: 20730931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro characterization of a collagen scaffold enzymatically cross-linked with a tailored elastin-like polymer.
    Garcia Y; Hemantkumar N; Collighan R; Griffin M; Rodriguez-Cabello JC; Pandit A
    Tissue Eng Part A; 2009 Apr; 15(4):887-99. PubMed ID: 18976154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional poly(ε-caprolactone) bioactive scaffolds with controlled structural and surface properties.
    Gloria A; Causa F; Russo T; Battista E; Della Moglie R; Zeppetelli S; De Santis R; Netti PA; Ambrosio L
    Biomacromolecules; 2012 Nov; 13(11):3510-21. PubMed ID: 23030686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.