These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 24206193)
21. Deep hypothermic circulatory arrest during the arterial switch operation is associated with reduction in cerebral oxygen extraction but no increase in white matter injury. Drury PP; Gunn AJ; Bennet L; Ganeshalingham A; Finucane K; Buckley D; Beca J J Thorac Cardiovasc Surg; 2013 Dec; 146(6):1327-33. PubMed ID: 23499473 [TBL] [Abstract][Full Text] [Related]
22. Nitric oxide production affects cerebral perfusion and metabolism after deep hypothermic circulatory arrest. Tsui SS; Kirshbom PM; Davies MJ; Jacobs MT; Greeley WJ; Kern FH; Gaynor JW; Ungerleider RM Ann Thorac Surg; 1996 Jun; 61(6):1699-707. PubMed ID: 8651770 [TBL] [Abstract][Full Text] [Related]
23. The effects of pulsatile versus nonpulsatile perfusion on blood viscoelasticity before and after deep hypothermic circulatory arrest in a neonatal piglet model. Undar A; Henderson N; Thurston GB; Masai T; Beyer EA; Frazier OH; Fraser CD Artif Organs; 1999 Aug; 23(8):717-21. PubMed ID: 10463495 [TBL] [Abstract][Full Text] [Related]
24. Effects of moderate versus deep hypothermic circulatory arrest and selective cerebral perfusion on cerebrospinal fluid proteomic profiles in a piglet model of cardiopulmonary bypass. Allibhai T; DiGeronimo R; Whitin J; Salazar J; Yu TT; Ling XB; Cohen H; Dixon P; Madan A J Thorac Cardiovasc Surg; 2009 Dec; 138(6):1290-6. PubMed ID: 19660276 [TBL] [Abstract][Full Text] [Related]
25. Cerebral mitochondrial dysfunction associated with deep hypothermic circulatory arrest in neonatal swine. Mavroudis CD; Karlsson M; Ko T; Hefti M; Gentile JI; Morgan RW; Plyler R; Mensah-Brown KG; Boorady TW; Melchior RW; Rosenthal TM; Shade BC; Schiavo KL; Nicolson SC; Spray TL; Sutton RM; Berg RA; Licht DJ; Gaynor JW; Kilbaugh TJ Eur J Cardiothorac Surg; 2018 Jul; 54(1):162-168. PubMed ID: 29346537 [TBL] [Abstract][Full Text] [Related]
26. Cerebral oxygen metabolism during total body flow and antegrade cerebral perfusion at deep and moderate hypothermia. Sasaki T; Boni L; Riemer RK; Yeung JT; Ramamoorthy C; Beckman R; Gisner C; Shuttleworth P; Hanley FL; Reddy VM Artif Organs; 2010 Nov; 34(11):980-6. PubMed ID: 21092040 [TBL] [Abstract][Full Text] [Related]
27. Ischemic preconditioning reduces deep hypothermic circulatory arrest cardiopulmonary bypass induced lung injury. Dong LY; Zheng JH; Qiu XX; Yu M; Ye YZ; Shi S; Yang DC; Xie YW Eur Rev Med Pharmacol Sci; 2013 Jul; 17(13):1789-99. PubMed ID: 23852906 [TBL] [Abstract][Full Text] [Related]
28. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept. Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205 [TBL] [Abstract][Full Text] [Related]
29. A novel augmented venous-drainage model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming. Jiang X; Gu T; Liu Y; Wang C; Shi E; Zhang G Perfusion; 2018 May; 33(4):297-302. PubMed ID: 29258403 [TBL] [Abstract][Full Text] [Related]
30. Modulation of nuclear factor-kappaB improves cardiac dysfunction associated with cardiopulmonary bypass and deep hypothermic circulatory arrest. Duffy JY; McLean KM; Lyons JM; Czaikowski AJ; Wagner CJ; Pearl JM Crit Care Med; 2009 Feb; 37(2):577-83. PubMed ID: 19114919 [TBL] [Abstract][Full Text] [Related]
32. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435 [TBL] [Abstract][Full Text] [Related]
33. High-volume continuous hemofiltration during cardiopulmonary bypass attenuates pulmonary dysfunction in neonatal lambs after deep hypothermic circulatory arrest. Nagashima M; Shin'oka T; Nollert G; Shum-Tim D; Rader CM; Mayer JE Circulation; 1998 Nov; 98(19 Suppl):II378-84. PubMed ID: 9852930 [TBL] [Abstract][Full Text] [Related]
34. Hypoxemic reperfusion exacerbates the neurological injury sustained during neonatal deep hypothermic circulatory arrest: a model of cyanotic surgical repair. Hickey EJ; You X; Kaimaktchiev V; Ungerleider RM Eur J Cardiothorac Surg; 2007 May; 31(5):906-14. PubMed ID: 17331738 [TBL] [Abstract][Full Text] [Related]
35. Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest. Abdul-Khaliq H; Troitzsch D; Schubert S; Wehsack A; Böttcher W; Gutsch E; Hübler M; Hetzer R; Lange PE Thorac Cardiovasc Surg; 2002 Apr; 50(2):77-81. PubMed ID: 11981706 [TBL] [Abstract][Full Text] [Related]
36. The effects of deep hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral blood flow in infants and children. Greeley WJ; Ungerleider RM; Smith LR; Reves JG J Thorac Cardiovasc Surg; 1989 May; 97(5):737-45. PubMed ID: 2709864 [TBL] [Abstract][Full Text] [Related]
37. The optimal flow rate for antegrade cerebral perfusion during deep hypothermic circulatory arrest. Chen Y; Liu J; Ji B; Tang Y; Wu A; Wang S; Zhou C; Long C Artif Organs; 2012 Sep; 36(9):774-9. PubMed ID: 22747795 [TBL] [Abstract][Full Text] [Related]
38. Cerebral protection during controlled hypoperfusion in a piglet model: comparison of moderate (25°C) versus deep (18°C) hypothermia at various flow rates using intraoperative measurements and ex vivo investigation. Walther T; Dhein S; Ullmann C; Schneider K; Bilz T; Rastan A; Garbade J; Falk V; Emrich FC; Muth P; Mohr FW; Kostelka M Thorac Cardiovasc Surg; 2013 Oct; 61(7):546-52. PubMed ID: 23138358 [TBL] [Abstract][Full Text] [Related]
39. Microvascular fluid exchange during CPB with deep hypothermia circulatory arrest or low flow. Elvevoll B; Husby P; Kvalheim VL; Stangeland L; Mongstad A; Svendsen ØS Perfusion; 2017 Nov; 32(8):661-669. PubMed ID: 28622752 [TBL] [Abstract][Full Text] [Related]
40. Error associated with the choice of an aortic cannula in measuring regional cerebral blood flow with microspheres during pulsatile CPB in a neonatal piglet model. Undar A; Lodge AJ; Daggett CW; Runge TM; Ungerleider RM; Calhoon JH ASAIO J; 1997; 43(5):M482-6. PubMed ID: 9360089 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]