These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24206323)

  • 1. Effective slippage on superhydrophobic trapezoidal grooves.
    Zhou J; Asmolov ES; Schmid F; Vinogradova OI
    J Chem Phys; 2013 Nov; 139(17):174708. PubMed ID: 24206323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective slip-length tensor for a flow over weakly slipping stripes.
    Asmolov ES; Zhou J; Schmid F; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023004. PubMed ID: 24032921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow past superhydrophobic surfaces with cosine variation in local slip length.
    Asmolov ES; Schmieschek S; Harting J; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023005. PubMed ID: 23496608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing effective slippage on superhydrophobic stripes by atomic force microscopy.
    Nizkaya TV; Dubov AL; Mourran A; Vinogradova OI
    Soft Matter; 2016 Aug; 12(33):6910-7. PubMed ID: 27476481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective slip over superhydrophobic surfaces in thin channels.
    Feuillebois F; Bazant MZ; Vinogradova OI
    Phys Rev Lett; 2009 Jan; 102(2):026001. PubMed ID: 19257293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drag force on a sphere moving toward an anisotropic superhydrophobic plane.
    Asmolov ES; Belyaev AV; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026330. PubMed ID: 21929113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slippage of water past superhydrophobic carbon nanotube forests in microchannels.
    Joseph P; Cottin-Bizonne C; Benoît JM; Ybert C; Journet C; Tabeling P; Bocquet L
    Phys Rev Lett; 2006 Oct; 97(15):156104. PubMed ID: 17155344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamic description.
    Cottin-Bizonne C; Barentin C; Charlaix E; Bocquet L; Barrat JL
    Eur Phys J E Soft Matter; 2004 Dec; 15(4):427-38. PubMed ID: 15611841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of slip length on superhydrophobic surfaces.
    Maali A; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2012 May; 370(1967):2304-20. PubMed ID: 22509060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane.
    Dubov AL; Schmieschek S; Asmolov ES; Harting J; Vinogradova OI
    J Chem Phys; 2014 Jan; 140(3):034707. PubMed ID: 25669407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations.
    Priezjev NV; Darhuber AA; Troian SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041608. PubMed ID: 15903683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electro-osmotic flow over a charged superhydrophobic surface.
    Zhao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066314. PubMed ID: 20866529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems.
    Xu Z; Meakin P
    J Chem Phys; 2009 Jun; 130(23):234103. PubMed ID: 19548707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas cushion model and hydrodynamic boundary conditions for superhydrophobic textures.
    Nizkaya TV; Asmolov ES; Vinogradova OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043017. PubMed ID: 25375603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures.
    Priezjev NV
    J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How solid-liquid adhesive property regulates liquid slippage on solid surfaces?
    Xue Y; Wu Y; Pei X; Duan H; Xue Q; Zhou F
    Langmuir; 2015 Jan; 31(1):226-32. PubMed ID: 25511171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching fluid slippage on pH-responsive superhydrophobic surfaces.
    Wu Y; Liu Z; Liang Y; Pei X; Zhou F; Xue Q
    Langmuir; 2014 Jun; 30(22):6463-8. PubMed ID: 24845303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.
    Bhushan B; Wang Y; Maali A
    Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations.
    Lee T; Charrault E; Neto C
    Adv Colloid Interface Sci; 2014 Aug; 210():21-38. PubMed ID: 24630344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.