These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24206427)

  • 21. Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula.
    Benlloch R; Roque E; Ferrándiz C; Cosson V; Caballero T; Penmetsa RV; Beltrán JP; Cañas LA; Ratet P; Madueño F
    Plant J; 2009 Oct; 60(1):102-11. PubMed ID: 19500303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two euAGAMOUS genes control C-function in Medicago truncatula.
    Serwatowska J; Roque E; Gómez-Mena C; Constantin GD; Wen J; Mysore KS; Lund OS; Johansen E; Beltrán JP; Cañas LA
    PLoS One; 2014; 9(8):e103770. PubMed ID: 25105497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing TILLING populations for reverse genetics in Medicago truncatula.
    Le Signor C; Savois V; Aubert G; Verdier J; Nicolas M; Pagny G; Moussy F; Sanchez M; Baker D; Clarke J; Thompson R
    Plant Biotechnol J; 2009 Jun; 7(5):430-41. PubMed ID: 19490506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LeGOO: An Expertized Knowledge Database for the Model Legume Medicago truncatula.
    Carrï Re SB; Verdenaud M; Gough C; Gouzy JRM; Gamas P
    Plant Cell Physiol; 2020 Jan; 61(1):203-211. PubMed ID: 31605615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional Genomics and Genetic Control of Flower and Fruit Development in Medicago truncatula: An Overview.
    Roque E; Gómez-Mena C; Ferrándiz C; Beltrán JP; Cañas LA
    Methods Mol Biol; 2018; 1822():273-290. PubMed ID: 30043310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa.
    Gou J; Debnath S; Sun L; Flanagan A; Tang Y; Jiang Q; Wen J; Wang ZY
    Plant Biotechnol J; 2018 Apr; 16(4):951-962. PubMed ID: 28941083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deletion-based reverse genetics in Medicago truncatula.
    Rogers C; Wen J; Chen R; Oldroyd G
    Plant Physiol; 2009 Nov; 151(3):1077-86. PubMed ID: 19759346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula.
    Tadege M; Ratet P; Mysore KS
    Trends Plant Sci; 2005 May; 10(5):229-35. PubMed ID: 15882655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MtFULc controls inflorescence development by directly repressing MtTFL1 in Medicago truncatula.
    Zhang P; Wang R; Wang X; Mysore KS; Wen J; Meng Y; Gu X; Niu L; Lin H
    J Plant Physiol; 2021 Jan; 256():153329. PubMed ID: 33310391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MtMAPKK4 is an essential gene for growth and reproduction of Medicago truncatula.
    Chen T; Zhou B; Duan L; Zhu H; Zhang Z
    Physiol Plant; 2017 Apr; 159(4):492-503. PubMed ID: 27935060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. T-DNA Insertional Mutagenesis and Activation Tagging in Medicago truncatula.
    Panara F; Calderini O; Porceddu A
    Methods Mol Biol; 2018; 1822():83-105. PubMed ID: 30043298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional Specialization of Duplicated
    Zhu B; Li H; Wen J; Mysore KS; Wang X; Pei Y; Niu L; Lin H
    Front Plant Sci; 2018; 9():854. PubMed ID: 30108597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dwarf and Increased Branching 1 controls plant height and axillary bud outgrowth in Medicago truncatula.
    Zhang X; He L; Zhao B; Zhou S; Li Y; He H; Bai Q; Zhao W; Guo S; Liu Y; Chen J
    J Exp Bot; 2020 Oct; 71(20):6355-6365. PubMed ID: 32964922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and characterization of petiolule-like pulvinus mutants with abolished nyctinastic leaf movement in the model legume Medicago truncatula.
    Zhou C; Han L; Fu C; Chai M; Zhang W; Li G; Tang Y; Wang ZY
    New Phytol; 2012 Oct; 196(1):92-100. PubMed ID: 22891817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medicago PHYA promotes flowering, primary stem elongation and expression of flowering time genes in long days.
    Jaudal M; Wen J; Mysore KS; Putterill J
    BMC Plant Biol; 2020 Jul; 20(1):329. PubMed ID: 32652925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional characterisation of brassinosteroid receptor MtBRI1 in Medicago truncatula.
    Cheng X; Gou X; Yin H; Mysore KS; Li J; Wen J
    Sci Rep; 2017 Aug; 7(1):9327. PubMed ID: 28839160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes.
    Thoquet P; Ghérardi M; Journet EP; Kereszt A; Ané JM; Prosperi JM; Huguet T
    BMC Plant Biol; 2002; 2():1. PubMed ID: 11825338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MERE1, a low-copy-number copia-type retroelement in Medicago truncatula active during tissue culture.
    Rakocevic A; Mondy S; Tirichine L; Cosson V; Brocard L; Iantcheva A; Cayrel A; Devier B; Abu El-Heba GA; Ratet P
    Plant Physiol; 2009 Nov; 151(3):1250-63. PubMed ID: 19656907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Array-based Comparative Genomic Hybridization Platform for Efficient Detection of Copy Number Variations in Fast Neutron-induced Medicago truncatula Mutants.
    Chen Y; Wang X; Lu S; Wang H; Li S; Chen R
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula.
    Cheng X; Peng J; Ma J; Tang Y; Chen R; Mysore KS; Wen J
    New Phytol; 2012 Jul; 195(1):71-84. PubMed ID: 22530598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.