BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24206523)

  • 1. The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana.
    Dow GJ; Berry JA; Bergmann DC
    New Phytol; 2014 Mar; 201(4):1205-1217. PubMed ID: 24206523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated model of stomatal development and leaf physiology.
    Dow GJ; Bergmann DC; Berry JA
    New Phytol; 2014 Mar; 201(4):1218-1226. PubMed ID: 24251982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of stomata clustering on leaf gas exchange.
    Lehmann P; Or D
    New Phytol; 2015 Sep; 207(4):1015-25. PubMed ID: 25967110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stomatal function, density and pattern, and CO
    Vráblová M; Vrábl D; Hronková M; Kubásek J; Šantrůček J
    Plant Biol (Stuttg); 2017 Sep; 19(5):689-701. PubMed ID: 28453883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of elevated carbon dioxide on stomatal characteristics and carbon isotope ratio of Arabidopsis thaliana ecotypes originating from an altitudinal gradient.
    Caldera HI; De Costa WA; Woodward FI; Lake JA; Ranwala SM
    Physiol Plant; 2017 Jan; 159(1):74-92. PubMed ID: 27514017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency.
    Papanatsiou M; Amtmann A; Blatt MR
    J Exp Bot; 2017 Apr; 68(9):2309-2315. PubMed ID: 28369641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing water-use efficiency directly through genetic manipulation of stomatal density.
    Franks PJ; W Doheny-Adams T; Britton-Harper ZJ; Gray JE
    New Phytol; 2015 Jul; 207(1):188-195. PubMed ID: 25754246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana.
    Easlon HM; Nemali KS; Richards JH; Hanson DT; Juenger TE; McKay JK
    Photosynth Res; 2014 Feb; 119(1-2):119-29. PubMed ID: 23893317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Take a deep breath: peptide signalling in stomatal patterning and differentiation.
    Richardson LG; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5243-51. PubMed ID: 23997204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange.
    Dow GJ; Berry JA; Bergmann DC
    New Phytol; 2017 Oct; 216(1):69-75. PubMed ID: 28833173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana.
    Dittberner H; Korte A; Mettler-Altmann T; Weber APM; Monroe G; de Meaux J
    Mol Ecol; 2018 Oct; 27(20):4052-4065. PubMed ID: 30118161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal development in the context of epidermal tissues.
    Torii KU
    Ann Bot; 2021 Jul; 128(2):137-148. PubMed ID: 33877316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling water use efficiency in a dynamic environment: An example using Arabidopsis thaliana.
    Vialet-Chabrand S; Matthews JSA; Brendel O; Blatt MR; Wang Y; Hills A; Griffiths H; Rogers S; Lawson T
    Plant Sci; 2016 Oct; 251():65-74. PubMed ID: 27593464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Assay of Abscisic Acid-Induced Stomatal Movement in Leaf Senescence.
    Zhang Y; Zhang K
    Methods Mol Biol; 2018; 1744():113-118. PubMed ID: 29392660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes.
    Pignon CP; Fernandes SB; Valluru R; Bandillo N; Lozano R; Buckler E; Gore MA; Long SP; Brown PJ; Leakey ADB
    Plant Physiol; 2021 Dec; 187(4):2544-2562. PubMed ID: 34618072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening for Natural Variation in Water Use Efficiency Traits in a Diversity Set of Brassica napus L. Identifies Candidate Variants in Photosynthetic Assimilation.
    Pater D; Mullen JL; McKay JK; Schroeder JI
    Plant Cell Physiol; 2017 Oct; 58(10):1700-1709. PubMed ID: 29048601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maize QTL mapping.
    Xie J; Fernandes SB; Mayfield-Jones D; Erice G; Choi M; E Lipka A; Leakey ADB
    Plant Physiol; 2021 Nov; 187(3):1462-1480. PubMed ID: 34618057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytohormones and their crosstalk in regulating stomatal development and patterning.
    Wei H; Jing Y; Zhang L; Kong D
    J Exp Bot; 2021 Mar; 72(7):2356-2370. PubMed ID: 33512461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stomatal VPD Response: There Is More to the Story Than ABA.
    Merilo E; Yarmolinsky D; Jalakas P; Parik H; Tulva I; Rasulov B; Kilk K; Kollist H
    Plant Physiol; 2018 Jan; 176(1):851-864. PubMed ID: 28986421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.