BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24206603)

  • 1. Ultrathin silicon membranes for wearable dialysis.
    Johnson DG; Khire TS; Lyubarskaya YL; Smith KJ; Desormeaux JP; Taylor JG; Gaborski TR; Shestopalov AA; Striemer CC; McGrath JL
    Adv Chronic Kidney Dis; 2013 Nov; 20(6):508-15. PubMed ID: 24206603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoporous membrane robustness / stability in small form factor microfluidic filtration system.
    Johnson DG; Pan S; Hayden A; McGrath JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1955-1958. PubMed ID: 28268711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture.
    Agrawal AA; Nehilla BJ; Reisig KV; Gaborski TR; Fang DZ; Striemer CC; Fauchet PM; McGrath JL
    Biomaterials; 2010 Jul; 31(20):5408-17. PubMed ID: 20398927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second Generation Nanoporous Silicon Nitride Membranes for High Toxin Clearance and Small Format Hemodialysis.
    Hill K; Walker SN; Salminen A; Chung HL; Li X; Ezzat B; Miller JJ; DesOrmeaux JS; Zhang J; Hayden A; Burgin T; Piraino L; May MN; Gaborski TR; Roussie JA; Taylor J; DiVincenti L; Shestopalov AA; McGrath JL; Johnson DG
    Adv Healthc Mater; 2020 Feb; 9(4):e1900750. PubMed ID: 31943849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro clearance and hemocompatibility assessment of ultrathin nanoporous silicon membranes for hemodialysis applications using human whole blood.
    Ahmadi M; Gorbet M; Yeow JT
    Blood Purif; 2013; 35(4):305-13. PubMed ID: 23920150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Separation and Hemocompatibility of Nitride Membranes in Microfluidic Filtration Systems.
    Salminen A; Hill K; Henry Chung L; James McGrath L; Johnson DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5814-5817. PubMed ID: 30441657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of continuous implantable renal replacement: past and future.
    Fissell WH; Fleischman AJ; Humes HD; Roy S
    Transl Res; 2007 Dec; 150(6):327-36. PubMed ID: 18022594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge- and size-based separation of macromolecules using ultrathin silicon membranes.
    Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Nature; 2007 Feb; 445(7129):749-53. PubMed ID: 17301789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes.
    Snyder JL; Getpreecharsawas J; Fang DZ; Gaborski TR; Striemer CC; Fauchet PM; Borkholder DA; McGrath JL
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18425-30. PubMed ID: 24167263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates.
    DesOrmeaux JP; Winans JD; Wayson SE; Gaborski TR; Khire TS; Striemer CC; McGrath JL
    Nanoscale; 2014 Sep; 6(18):10798-805. PubMed ID: 25105590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Renal replacement therapy by hemodialysis: an overview].
    Jacobs C
    Nephrol Ther; 2009 Jul; 5(4):306-12. PubMed ID: 19481513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications.
    Kim S; Feinberg B; Kant R; Chui B; Goldman K; Park J; Moses W; Blaha C; Iqbal Z; Chow C; Wright N; Fissell WH; Zydney A; Roy S
    PLoS One; 2016; 11(7):e0159526. PubMed ID: 27438878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis.
    Clark WR; Hamburger RJ; Lysaght MJ
    Kidney Int; 1999 Dec; 56(6):2005-15. PubMed ID: 10594776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes.
    Fang DZ; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    J Phys Condens Matter; 2010 Nov; 22(45):454134. PubMed ID: 21339620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free Standing, Large-Area Silicon Nitride Membranes for High Toxin Clearance in Blood Surrogate for Small-Format Hemodialysis.
    Miller JJ; Carter JA; Hill K; DesOrmeaux JS; Carter RN; Gaborski TR; Roussie JA; McGrath JL; Johnson DG
    Membranes (Basel); 2020 Jun; 10(6):. PubMed ID: 32517263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Evolving Patterns of Uremia: Unmet Clinical Needs in Dialysis.
    Yu X
    Contrib Nephrol; 2017; 191():1-7. PubMed ID: 28910786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes.
    Gaborski TR; Snyder JL; Striemer CC; Fang DZ; Hoffman M; Fauchet PM; McGrath JL
    ACS Nano; 2010 Nov; 4(11):6973-81. PubMed ID: 21043434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Ways of intensification of hemodialysis therapy].
    Filiptsev PIa; Kirkhman VV; Timokhov VS
    Ter Arkh; 1988; 60(6):44-7. PubMed ID: 3206368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of nano-porous alumina membranes for hemodialysis application.
    Attaluri AC; Huang Z; Belwalkar A; Van Geertruyden W; Gao D; Misiolek W
    ASAIO J; 2009; 55(3):217-23. PubMed ID: 19293709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The future of hemodialysis membranes.
    Humes HD; Fissell WH; Tiranathanagul K
    Kidney Int; 2006 Apr; 69(7):1115-9. PubMed ID: 16609679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.