These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24207011)

  • 1. Interface coupling-induced enhancement of magnetoimpedance effect in heterogeneous nanobrush by adjusting textures of Co nanowires.
    Zhang Y; Dong J; Sun X; Liu Q; Wang J
    Nanoscale Res Lett; 2013 Nov; 8(1):471. PubMed ID: 24207011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced giant magnetoimpedance in heterogeneous nanobrush.
    Zhang Y; Mu C; Luo C; Dong J; Liu Q; Wang J
    Nanoscale Res Lett; 2012 Sep; 7(1):506. PubMed ID: 22963551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable magnetic properties of heterogeneous nanobrush: from nanowire to nanofilm.
    Ren Y; Dai Y; Zhang B; Liu Q; Xue D; Wang J
    Nanoscale Res Lett; 2010 Mar; 5(5):853-8. PubMed ID: 20672098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic field sensors using arrays of electrospun magnetoelectric Janus nanowires.
    Bauer MJ; Wen X; Tiwari P; Arnold DP; Andrew JS
    Microsyst Nanoeng; 2018; 4():37. PubMed ID: 31057925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Magnetostatic Interactions in FeNi-Based Multilayered Magnetoimpedance Elements.
    Melnikov GY; Komogortsev SV; Svalov AV; Gorchakovskiy AA; Vazhenina IG; Kurlyandskaya GV
    Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Template assisted electrochemical growth of cobalt nanowires: influence of deposition conditions on structural, optical and magnetic properties.
    Cortés A; Lavín R; Denardin JC; Marotti RE; Dalchiele EA; Valdivia P; Gómez H
    J Nanosci Nanotechnol; 2011 May; 11(5):3899-910. PubMed ID: 21780384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant Magnetoimpedance Effect of Multilayered Thin Film Meanders Formed on Flexible Substrates.
    Liu M; Wang Z; Meng Z; Sun X; Huang Y; Guo Y; Yang Z
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galfenol Thin Films and Nanowires.
    Stadler BJH; Reddy M; Basantkumar R; McGary P; Estrine E; Huang X; Sung SY; Tan L; Zou J; Maqableh M; Shore D; Gage T; Um J; Hein M; Sharma A
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30103550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic force microscopy on nanocrystalline Co films.
    Karoutsos V; Poulopoulos P; Kapaklis V; Pappas SD; Trachylis D; Politis C
    J Nanosci Nanotechnol; 2010 Sep; 10(9):6120-7. PubMed ID: 21133159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetoimpedance of CoFeCrSiB Ribbon-Based Sensitive Element with FeNi Covering: Experiment and Modeling.
    Volchkov SO; Pasynkova AA; Derevyanko MS; Bukreev DA; Kozlov NV; Svalov AV; Semirov AV
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of segmented Au/Co/Au nanowires: insights in the quality of Co/Au junctions.
    Jang B; Pellicer E; Guerrero M; Chen X; Choi H; Nelson BJ; Sort J; Pané S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14583-9. PubMed ID: 25025496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Lithiophilic Cobalt Nitride Nanobrush as a Stable Host for High-Performance Lithium Metal Anodes.
    Lei M; Wang JG; Ren L; Nan D; Shen C; Xie K; Liu X
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30992-30998. PubMed ID: 31385685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetoimpedance Effect in Cobalt-Based Amorphous Ribbons with an Inhomogeneous Magnetic Structure.
    Bukreev DA; Derevyanko MS; Semirov AV
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attachment of metal nanoparticles to SnO2 nanowires for enhancement of gas sensing properties.
    Woo HW; Kwon YJ; Cho HY; Na HG
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8242-7. PubMed ID: 25958508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thickness dependence of the microstructures and magnetic properties of electroplated Co nanowires.
    Ye Z; Liu H; Luo Z; Lee HG; Wu W; Naugle DG; Lyuksyutov I
    Nanotechnology; 2009 Jan; 20(4):045704. PubMed ID: 19417330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of magnetic properties and GMI effect of Thin Co-rich Microwires for GMI Microsensors.
    Gonzalez-Legarreta L; Corte-Leon P; Zhukova V; Ipatov M; Blanco JM; Gonzalez J; Zhukov A
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing.
    Hills KD; Oliveira DA; Cavallaro ND; Gomes CL; McLamore ES
    Analyst; 2018 Mar; 143(7):1650-1661. PubMed ID: 29541704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Model for the Magnetoimpedance Effect in Non-Symmetric Nanostructured Multilayered Films with Ferrogel Coverings.
    Buznikov NA; Kurlyandskaya GV
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individually grown cobalt nanowires as magnetic force microscopy probes.
    Alotaibi S; Samba J; Pokharel S; Lan Y; Uradu K; Afolabi A; Unlu I; Basnet G; Aslan K; Flanders BN; Lisfi A; Ozturk B
    Appl Phys Lett; 2018 Feb; 112(9):092401. PubMed ID: 29531389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.