BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24209319)

  • 1. Microchip bioreactors based on trypsin-immobilized graphene oxide-poly(urea-formaldehyde) composite coating for efficient peptide mapping.
    Fan H; Yao F; Xu S; Chen G
    Talanta; 2013 Dec; 117():119-26. PubMed ID: 24209319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis.
    Bao H; Zhang L; Chen G
    J Chromatogr A; 2013 Oct; 1310():74-81. PubMed ID: 23998335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis.
    Bao H; Chen Q; Zhang L; Chen G
    Analyst; 2011 Dec; 136(24):5190-6. PubMed ID: 22013584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis.
    Fan H; Bao H; Zhang L; Chen G
    Proteomics; 2011 Aug; 11(16):3420-3. PubMed ID: 21751341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis.
    Wang S; Chen Z; Yang P; Chen G
    Proteomics; 2008 May; 8(9):1785-8. PubMed ID: 18442168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis.
    Liu T; Wang S; Chen G
    Talanta; 2009 Mar; 77(5):1767-73. PubMed ID: 19159796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion.
    Jiang B; Yang K; Zhao Q; Wu Q; Liang Z; Zhang L; Peng X; Zhang Y
    J Chromatogr A; 2012 Sep; 1254():8-13. PubMed ID: 22871380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared-assisted tryptic proteolysis for peptide mapping.
    Wang S; Zhang L; Yang P; Chen G
    Proteomics; 2008 Jul; 8(13):2579-82. PubMed ID: 18546161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of trypsin on miniature incandescent bulbs for infrared-assisted proteolysis.
    Ge H; Bao H; Zhang L; Chen G
    Anal Chim Acta; 2014 Oct; 845():77-84. PubMed ID: 25201275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Far infrared-assisted encapsulation of filter paper strips in poly(methyl methacrylate) for proteolysis.
    Chen Q; Bao H; Zhang L; Chen G
    Electrophoresis; 2016 Feb; 37(3):493-7. PubMed ID: 26389537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of trypsin on graphene oxide for microwave-assisted on-plate proteolysis combined with MALDI-MS analysis.
    Xu G; Chen X; Hu J; Yang P; Yang D; Wei L
    Analyst; 2012 Jun; 137(12):2757-61. PubMed ID: 22575850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inflation bulb-driven microfluidic reactor for infrared-assisted proteolysis.
    Liu T; Bao H; Chen G
    Electrophoresis; 2010 Sep; 31(18):3070-3. PubMed ID: 20725916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber-packed channel bioreactor for microfluidic protein digestion.
    Fan H; Chen G
    Proteomics; 2007 Oct; 7(19):3445-9. PubMed ID: 17722209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores.
    Fan H; Chen Z; Zhang L; Yang P; Chen G
    J Chromatogr A; 2008 Feb; 1179(2):224-8. PubMed ID: 18096173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue.
    Jiang H; Yuan H; Liang Y; Xia S; Zhao Q; Wu Q; Zhang L; Liang Z; Zhang Y
    J Chromatogr A; 2012 Jul; 1246():111-6. PubMed ID: 22446077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of electrodes in a suction cup-driven microchip for alternating current-accelerated proteolysis.
    Liu T; Bao H; Zhang L; Chen G
    Electrophoresis; 2009 Sep; 30(18):3265-8. PubMed ID: 19705354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternating current-assisted on-plate proteolysis for MALDI-TOF MS peptide mapping.
    Wang S; Wei B; Yang P; Chen G
    Proteomics; 2008 Nov; 8(22):4637-41. PubMed ID: 18924112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared-assisted proteolysis using trypsin-immobilized silica microspheres for peptide mapping.
    Bao H; Lui T; Zhang L; Chen G
    Proteomics; 2009 Feb; 9(4):1114-7. PubMed ID: 19180540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith.
    Ma J; Hou C; Liang Y; Wang T; Liang Z; Zhang L; Zhang Y
    Proteomics; 2011 Mar; 11(5):991-5. PubMed ID: 21280225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion.
    Kecskemeti A; Gaspar A
    Talanta; 2017 May; 166():275-283. PubMed ID: 28213235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.