These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 24209927)
1. Hybrid fusion of linear, non-linear and spectral models for the dynamic modeling of sEMG and skeletal muscle force: an application to upper extremity amputation. Potluri C; Anugolu M; Schoen MP; Subbaram Naidu D; Urfer A; Chiu S Comput Biol Med; 2013 Nov; 43(11):1815-26. PubMed ID: 24209927 [TBL] [Abstract][Full Text] [Related]
2. Fusion of spectral models for dynamic modeling of sEMG and skeletal muscle force. Potluri C; Anugolu M; Chiu S; Urfer A; Schoen MP; Naidu DS Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3102-5. PubMed ID: 23366581 [TBL] [Abstract][Full Text] [Related]
3. Discrete wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles. Chowdhury SK; Nimbarte AD; Jaridi M; Creese RC J Electromyogr Kinesiol; 2013 Oct; 23(5):995-1003. PubMed ID: 23787059 [TBL] [Abstract][Full Text] [Related]
4. Using the discrete wavelet transform for time-frequency analysis of the surface EMG signal. Constable R; Thornhill RJ Biomed Sci Instrum; 1993; 29():121-7. PubMed ID: 8329582 [TBL] [Abstract][Full Text] [Related]
5. sEMG wavelet-based indices predicts muscle power loss during dynamic contractions. González-Izal M; Rodríguez-Carreño I; Malanda A; Mallor-Giménez F; Navarro-Amézqueta I; Gorostiaga EM; Izquierdo M J Electromyogr Kinesiol; 2010 Dec; 20(6):1097-106. PubMed ID: 20579906 [TBL] [Abstract][Full Text] [Related]
6. Comparative study of wavelet denoising in myoelectric control applications. Sharma T; Veer K J Med Eng Technol; 2016; 40(3):80-6. PubMed ID: 26887581 [TBL] [Abstract][Full Text] [Related]
7. Real-time pinch force estimation by surface electromyography using an artificial neural network. Choi C; Kwon S; Park W; Lee HD; Kim J Med Eng Phys; 2010 Jun; 32(5):429-36. PubMed ID: 20430679 [TBL] [Abstract][Full Text] [Related]
8. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction. Soylu AR; Arpinar-Avsar P J Electromyogr Kinesiol; 2010 Aug; 20(4):773-6. PubMed ID: 20211568 [TBL] [Abstract][Full Text] [Related]
9. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography. Gazzoni M; Celadon N; Mastrapasqua D; Paleari M; Margaria V; Ariano P PLoS One; 2014; 9(10):e109943. PubMed ID: 25289669 [TBL] [Abstract][Full Text] [Related]
10. Evolved pseudo-wavelet function to optimally decompose sEMG for automated classification of localized muscle fatigue. Al-Mulla MR; Sepulveda F; Colley M Med Eng Phys; 2011 May; 33(4):411-7. PubMed ID: 21256068 [TBL] [Abstract][Full Text] [Related]
11. Surface EMG force modeling with joint angle based calibration. Hashemi J; Morin E; Mousavi P; Hashtrudi-Zaad K J Electromyogr Kinesiol; 2013 Apr; 23(2):416-24. PubMed ID: 23273763 [TBL] [Abstract][Full Text] [Related]
12. Mechanical force spinal manipulation increases trunk muscle strength assessed by electromyography: a comparative clinical trial. Keller TS; Colloca CJ J Manipulative Physiol Ther; 2000; 23(9):585-95. PubMed ID: 11145798 [TBL] [Abstract][Full Text] [Related]
13. Towards smart prosthetic hand: Adaptive probability based skeletan muscle fatigue model. Kumar P; Sebastian A; Potluri C; Urfer A; Naidu D; Schoen MP Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1316-9. PubMed ID: 21095927 [TBL] [Abstract][Full Text] [Related]
14. [Pattern recognition of surface electromyography signal based on multi-scale fuzzy entropy]. Zou X; Lei M Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1184-8. PubMed ID: 23469553 [TBL] [Abstract][Full Text] [Related]
15. The analysis of surface EMG signals with the wavelet-based correlation dimension method. Wang G; Zhang Y; Wang J Comput Math Methods Med; 2014; 2014():284308. PubMed ID: 24868240 [TBL] [Abstract][Full Text] [Related]
16. [Study on the classification of motor unit action potentials from single-channel surface EMG signal based on the wavelet analysis]. Li Q; Yang J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):893-7. PubMed ID: 20842866 [TBL] [Abstract][Full Text] [Related]
17. EMG classification using wavelet functions to determine muscle contraction. Sharma T; Veer K J Med Eng Technol; 2016; 40(3):99-105. PubMed ID: 26942656 [TBL] [Abstract][Full Text] [Related]
18. [Research on the surface electromyography signal decomposition based on multi-channel signal fusion analysis]. Li Q; Yang J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Oct; 29(5):948-53. PubMed ID: 23198440 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the sEMG/force relationship using HD-sEMG technique and data fusion: A simulation study. Al Harrach M; Carriou V; Boudaoud S; Laforet J; Marin F Comput Biol Med; 2017 Apr; 83():34-47. PubMed ID: 28219032 [TBL] [Abstract][Full Text] [Related]
20. Less is more: high pass filtering, to remove up to 99% of the surface EMG signal power, improves EMG-based biceps brachii muscle force estimates. Potvin JR; Brown SH J Electromyogr Kinesiol; 2004 Jun; 14(3):389-99. PubMed ID: 15094152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]