BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24209933)

  • 1. Just an additional hydrogen bond can dramatically reduce the catalytic activity of Bacillus subtilis lipase A I12T mutant: an integration of computational modeling and experimental analysis.
    Ni Z; Jin R; Chen H; Lin X
    Comput Biol Med; 2013 Nov; 43(11):1882-8. PubMed ID: 24209933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating In Silico and In vitro approaches to dissect the stereoselectivity of Bacillus subtilis lipase A toward ketoprofen vinyl ester.
    Ni Z; Zhou P; Jin X; Lin XF
    Chem Biol Drug Des; 2011 Aug; 78(2):301-8. PubMed ID: 21477088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability.
    Wu JP; Li M; Zhou Y; Yang LR; Xu G
    Biotechnol Lett; 2015 Feb; 37(2):403-7. PubMed ID: 25257598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations.
    Singh B; Bulusu G; Mitra A
    J Phys Chem B; 2015 Jan; 119(2):392-409. PubMed ID: 25495458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of a unique halide-stabilizing residue on the catalytic properties of haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58.
    Hasan K; Gora A; Brezovsky J; Chaloupkova R; Moskalikova H; Fortova A; Nagata Y; Damborsky J; Prokop Z
    FEBS J; 2013 Jul; 280(13):3149-59. PubMed ID: 23490078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution.
    Funke SA; Otte N; Eggert T; Bocola M; Jaeger KE; Thiel W
    Protein Eng Des Sel; 2005 Nov; 18(11):509-14. PubMed ID: 16203748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternate conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.3 A resolution.
    Kawasaki K; Kondo H; Suzuki M; Ohgiya S; Tsuda S
    Acta Crystallogr D Biol Crystallogr; 2002 Jul; 58(Pt 7):1168-74. PubMed ID: 12077437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent dielectric effect and side chain mutation on the structural stability of Burkholderia cepacia lipase active site: a quantum mechanical/molecular mechanics study.
    Tahan A; Monajjemi M
    Acta Biotheor; 2011 Dec; 59(3-4):291-312. PubMed ID: 21710316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the catalytic activity of a GH5 processive endoglucanase from Bacillus subtilis BS-5 by site-directed mutagenesis.
    Lv K; Shao W; Pedroso MM; Peng J; Wu B; Li J; He B; Schenk G
    Int J Biol Macromol; 2021 Jan; 168():442-452. PubMed ID: 33310097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A.
    Tian F; Yang C; Wang C; Guo T; Zhou P
    J Mol Model; 2014 Jun; 20(6):2257. PubMed ID: 24827611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Relation Between Lipase Thermostability and Dynamics of Hydrogen Bond and Hydrogen Bond Network Based on Long Time Molecular Dynamics Simulation.
    Zhang L; Ding Y
    Protein Pept Lett; 2017; 24(7):643-648. PubMed ID: 28464764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.
    Ishida T
    J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a mutant Bacillus subtilis adenylosuccinate lyase equivalent to a mutant enzyme found in human adenylosuccinate lyase deficiency: asparagine 276 plays an important structural role.
    Palenchar JB; Colman RF
    Biochemistry; 2003 Feb; 42(7):1831-41. PubMed ID: 12590570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating sequence and solvent specific design targets to protect and stabilize enzymes for biocatalysis in ionic liquids.
    Sprenger KG; Plaks JG; Kaar JL; Pfaendtner J
    Phys Chem Chem Phys; 2017 Jul; 19(26):17426-17433. PubMed ID: 28650512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of bis-ANS to Bacillus subtilis lipase: a combined computational and experimental investigation.
    Kamal MZ; Ali J; Rao NM
    Biochim Biophys Acta; 2013 Aug; 1834(8):1501-9. PubMed ID: 23639749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL
    Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.