BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 24210000)

  • 41. Characterization of molecular and functional alterations of tumor endothelial cells to design anti-angiogenic strategies.
    Bussolati B; Deregibus MC; Camussi G
    Curr Vasc Pharmacol; 2010 Mar; 8(2):220-32. PubMed ID: 19485921
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Broad targeting of angiogenesis for cancer prevention and therapy.
    Wang Z; Dabrosin C; Yin X; Fuster MM; Arreola A; Rathmell WK; Generali D; Nagaraju GP; El-Rayes B; Ribatti D; Chen YC; Honoki K; Fujii H; Georgakilas AG; Nowsheen S; Amedei A; Niccolai E; Amin A; Ashraf SS; Helferich B; Yang X; Guha G; Bhakta D; Ciriolo MR; Aquilano K; Chen S; Halicka D; Mohammed SI; Azmi AS; Bilsland A; Keith WN; Jensen LD
    Semin Cancer Biol; 2015 Dec; 35 Suppl(Suppl):S224-S243. PubMed ID: 25600295
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antiangiogenic therapy through copper chelation.
    Sproull M; Brechbiel M; Camphausen K
    Expert Opin Ther Targets; 2003 Jun; 7(3):405-9. PubMed ID: 12783576
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Periostin: a putative mediator involved in tumour resistance to anti-angiogenic therapy?
    Wang W; Ma JL; Jia WD; Xu GL
    Cell Biol Int; 2011 Nov; 35(11):1085-8. PubMed ID: 21999314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functionalized heparin-protamine based self-assembled nanocomplex for efficient anti-angiogenic therapy.
    Alam F; Al-Hilal TA; Chung SW; Park J; Mahmud F; Seo D; Kim HS; Lee DS; Byun Y
    J Control Release; 2015 Jan; 197():180-9. PubMed ID: 25445701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vascular phenotype identification and anti-angiogenic treatment recommendation: A pseudo-multiscale mathematical model of angiogenesis.
    Hutchinson LG; Gaffney EA; Maini PK; Wagg J; Phipps A; Byrne HM
    J Theor Biol; 2016 Jun; 398():162-80. PubMed ID: 26987523
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.
    Marelli B; Le Nihouannen D; Hacking SA; Tran S; Li J; Murshed M; Doillon CJ; Ghezzi CE; Zhang YL; Nazhat SN; Barralet JE
    Biomaterials; 2015 Jun; 54():126-35. PubMed ID: 25907046
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pharmacological regulation of platelet factors that influence tumor angiogenesis.
    Yan M; Lesyk G; Radziwon-Balicka A; Jurasz P
    Semin Oncol; 2014 Jun; 41(3):370-7. PubMed ID: 25023352
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Do anti-angiogenic cancer therapies increase risk of significant weight loss?
    Zhang S; Yu M; Wei Y
    Expert Opin Drug Saf; 2014 Apr; 13(4):473-82. PubMed ID: 24588304
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Angiogenesis revisited - role and therapeutic potential of targeting endothelial metabolism.
    Stapor P; Wang X; Goveia J; Moens S; Carmeliet P
    J Cell Sci; 2014 Oct; 127(Pt 20):4331-41. PubMed ID: 25179598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1.
    Juarez JC; Betancourt O; Pirie-Shepherd SR; Guan X; Price ML; Shaw DE; Mazar AP; DoƱate F
    Clin Cancer Res; 2006 Aug; 12(16):4974-82. PubMed ID: 16914587
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Therapeutic application of anti-angiogenic nanomaterials in cancers.
    Mukherjee S; Patra CR
    Nanoscale; 2016 Jul; 8(25):12444-70. PubMed ID: 27067119
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of Curcumin Capped Copper Nanoparticles as Possible Inhibitors of Human Breast Cancer Cells and Angiogenesis: a Comparative Study with Native Curcumin.
    Kamble S; Utage B; Mogle P; Kamble R; Hese S; Dawane B; Gacche R
    AAPS PharmSciTech; 2016 Oct; 17(5):1030-41. PubMed ID: 26729534
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems.
    Urso E; Maffia M
    J Vasc Res; 2015; 52(3):172-96. PubMed ID: 26484858
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis.
    Giraudo E; Inoue M; Hanahan D
    J Clin Invest; 2004 Sep; 114(5):623-33. PubMed ID: 15343380
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of the tumor stroma in resistance to anti-angiogenic therapy.
    Huijbers EJ; van Beijnum JR; Thijssen VL; Sabrkhany S; Nowak-Sliwinska P; Griffioen AW
    Drug Resist Updat; 2016 Mar; 25():26-37. PubMed ID: 27155374
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism and its regulation of tumor-induced angiogenesis.
    Gupta MK; Qin RY
    World J Gastroenterol; 2003 Jun; 9(6):1144-55. PubMed ID: 12800214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Copper lowering therapy with tetrathiomolybdate as an antiangiogenic strategy in cancer.
    Brewer GJ
    Curr Cancer Drug Targets; 2005 May; 5(3):195-202. PubMed ID: 15892619
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-affinity Cu(I) chelator PSP-2 as potential anti-angiogenic agent.
    Heuberger DM; Harankhedkar S; Morgan T; Wolint P; Calcagni M; Lai B; Fahrni CJ; Buschmann J
    Sci Rep; 2019 Oct; 9(1):14055. PubMed ID: 31575910
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Type IV collagen-derived angiogenesis inhibitors.
    Mundel TM; Kalluri R
    Microvasc Res; 2007; 74(2-3):85-9. PubMed ID: 17602710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.