BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 24210068)

  • 1. Partial least square and hierarchical clustering in ADMET modeling: prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands.
    Nikolic K; Filipic S; Smoliński A; Kaliszan R; Agbaba D
    J Pharm Pharm Sci; 2013; 16(4):622-47. PubMed ID: 24210068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands using PAMPA technique and quantitative-structure permeability relationship analysis.
    Vucicevic J; Nikolic K; Dobričić V; Agbaba D
    Eur J Pharm Sci; 2015 Feb; 68():94-105. PubMed ID: 25542610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of biopartitioning micellar chromatography and RP-HPLC for the determination of blood-brain barrier penetration of α-adrenergic/imidazoline receptor ligands, and QSPR analysis.
    Vucicevic J; Popovic M; Nikolic K; Filipic S; Obradovic D; Agbaba D
    SAR QSAR Environ Res; 2017 Mar; 28(3):235-252. PubMed ID: 28332439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADME evaluation in drug discovery. 3. Modeling blood-brain barrier partitioning using simple molecular descriptors.
    Hou TJ; Xu XJ
    J Chem Inf Comput Sci; 2003; 43(6):2137-52. PubMed ID: 14632466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysing molecular polar surface descriptors to predict blood-brain barrier permeation.
    Shityakov S; Neuhaus W; Dandekar T; Förster C
    Int J Comput Biol Drug Des; 2013; 6(1-2):146-56. PubMed ID: 23428480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols.
    Stępnik KE; Malinowska I
    J Chromatogr A; 2013 Apr; 1286():127-36. PubMed ID: 23506703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer Assisted Models for Blood Brain Barrier Permeation of 1, 5-Benzodiazepines.
    Dhavale RP; Choudhari PB; Bhatia MS
    Curr Comput Aided Drug Des; 2021; 17(2):187-200. PubMed ID: 32003700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of PAMPA-models to predict BBB permeability including efflux ratio, plasma protein binding and physicochemical parameters.
    Mensch J; Jaroskova L; Sanderson W; Melis A; Mackie C; Verreck G; Brewster ME; Augustijns P
    Int J Pharm; 2010 Aug; 395(1-2):182-97. PubMed ID: 20635475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Qualitative prediction of blood-brain barrier permeability on a large and refined dataset.
    Muehlbacher M; Spitzer GM; Liedl KR; Kornhuber J
    J Comput Aided Mol Des; 2011 Dec; 25(12):1095-106. PubMed ID: 22109848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-retention relationship of selected imidazoline derivatives on α1-acid glycoprotein column.
    Filipic S; Ruzic D; Vucicevic J; Nikolic K; Agbaba D
    J Pharm Biomed Anal; 2016 Aug; 127():101-11. PubMed ID: 26968888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations.
    Carpenter TS; Kirshner DA; Lau EY; Wong SE; Nilmeier JP; Lightstone FC
    Biophys J; 2014 Aug; 107(3):630-641. PubMed ID: 25099802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indexes of polar interactions between ionizable drugs and membrane phospholipids measured by IAM-HPLC: their relationships with data of Blood-Brain Barrier passage.
    Grumetto L; Russo G; Barbato F
    Eur J Pharm Sci; 2014 Dec; 65():139-46. PubMed ID: 25262853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new descriptor via bio-mimetic chromatography and modeling for the blood brain barrier (Part II).
    Kouskoura MG; Piteni AI; Markopoulou CK
    J Pharm Biomed Anal; 2019 Feb; 164():808-817. PubMed ID: 29884296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico ADME modelling: prediction models for blood-brain barrier permeation using a systematic variable selection method.
    Narayanan R; Gunturi SB
    Bioorg Med Chem; 2005 Apr; 13(8):3017-28. PubMed ID: 15781411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational models to predict blood-brain barrier permeation and CNS activity.
    Subramanian G; Kitchen DB
    J Comput Aided Mol Des; 2003 Oct; 17(10):643-64. PubMed ID: 15068364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights for predicting blood-brain barrier penetration of CNS targeted molecules using QSPR approaches.
    Fan Y; Unwalla R; Denny RA; Di L; Kerns EH; Diller DJ; Humblet C
    J Chem Inf Model; 2010 Jun; 50(6):1123-33. PubMed ID: 20578728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of retention parameters obtained in RP-TLC system and their application on QSAR/QSPR of some alpha adrenergic and imidazoline receptor ligands.
    Eríc S; Pavlović M; Popović G; Agbaba D
    J Chromatogr Sci; 2007 Mar; 45(3):140-5. PubMed ID: 17462128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the utility of momentum-space descriptors for predicting blood-brain barrier penetration.
    Al-Fahemi JH; Cooper DL; Allan NL
    J Mol Graph Model; 2007 Oct; 26(3):607-12. PubMed ID: 17300970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-mobility relationship analysis of imidazoline receptor ligands in CDs-mediated CE.
    Filipic S; Nikolic K; Vovk I; Krizman M; Agbaba D
    Electrophoresis; 2013 Feb; 34(3):471-82. PubMed ID: 23161743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADME properties evaluation in drug discovery: in silico prediction of blood-brain partitioning.
    Zhu L; Zhao J; Zhang Y; Zhou W; Yin L; Wang Y; Fan Y; Chen Y; Liu H
    Mol Divers; 2018 Nov; 22(4):979-990. PubMed ID: 30083853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.