These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 24210273)

  • 1. A finite volume method and experimental study of a stator of a piezoelectric traveling wave rotary ultrasonic motor.
    Bolborici V; Dawson FP; Pugh MC
    Ultrasonics; 2014 Mar; 54(3):809-20. PubMed ID: 24210273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and experimental analysis of the linear ultrasonic motor with in-plane bending and longitudinal mode.
    Wan Z; Hu H
    Ultrasonics; 2014 Mar; 54(3):921-8. PubMed ID: 24360816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel contact model of piezoelectric traveling wave rotary ultrasonic motors with the finite volume method.
    Renteria-Marquez IA; Renteria-Marquez A; Tseng BTL
    Ultrasonics; 2018 Nov; 90():5-17. PubMed ID: 29902664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristic model of travelling wave ultrasonic motor.
    Jingzhuo S; Dongmei Y
    Ultrasonics; 2014 Feb; 54(2):725-30. PubMed ID: 24091150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration analysis of cubic rotary-linear piezoelectric actuator.
    Mashimo T; Toyama S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):844-8. PubMed ID: 21507762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A piezoelectric motor using flexural vibration of a thin piezoelectric membrane.
    Lamberti N; Iula A; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):23-9. PubMed ID: 18244154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamic model of the piezoelectric traveling wave rotary ultrasonic motor stator with the finite volume method.
    Renteria Marquez IA; Bolborici V
    Ultrasonics; 2017 May; 77():69-78. PubMed ID: 28183069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A traveling wave ultrasonic motor of high torque.
    Chen Y; Liu QL; Zhou TY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e581-4. PubMed ID: 16793077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radially composite piezoelectric ceramic tubular transducer in radial vibration.
    Shuyu L; Shuaijun W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2492-8. PubMed ID: 22083782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyses of the temperature field of traveling-wave rotary ultrasonic motors.
    Lu X; Hu J; Zhao C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2708-19. PubMed ID: 23443706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of ring type traveling wave ultrasonic motor in vacuum.
    Qu J; Zhou N; Tian X; Jin L; Xu Z
    Ultrasonics; 2009 Mar; 49(3):338-43. PubMed ID: 19058827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cylindrical traveling wave ultrasonic motor using a circumferential composite transducer.
    Liu Y; Liu J; Chen W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2397-404. PubMed ID: 22083773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy trapping in power transmission through an elastic plate by finite piezoelectric transducers.
    Yang Z; Yang J; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2493-501. PubMed ID: 19049929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simplified formulae to investigate flexural vibration characteristics of piezoelectric tubes in ultrasonic micro-actuators.
    Zhang H; Zhang SY; Fan L
    Ultrasonics; 2010 Mar; 50(3):397-402. PubMed ID: 19818979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traveling-wave piezoelectric linear motor Part I: the stator design.
    Ting Y; Chen LC; Li CC; Huang JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):847-53. PubMed ID: 17441594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traveling wave ultrasonic motor: coupling effects in free stator.
    Frayssignes H; Briot R
    Ultrasonics; 2003 Mar; 41(2):89-95. PubMed ID: 12565072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel modeling technique for the stator of traveling wave ultrasonic motors.
    Pons JL; Rodríguez H; Ceres R; Calderón L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1429-35. PubMed ID: 14682626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband electrical impedance matching for piezoelectric ultrasound transducers.
    Huang H; Paramo D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2699-707. PubMed ID: 23443705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of interface bonding on acoustic wave generation in an elastic body by surface-mounted piezoelectric transducers.
    Li P; Jin F; Chen W; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1957-63. PubMed ID: 24658726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and manufacturing of a piezoelectric traveling-wave pumping device.
    Hernandez C; Bernard Y; Razek A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1949-56. PubMed ID: 24658725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.