BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24210650)

  • 1. Impact of an external electron acceptor on phosphorus mobility between water and sediments.
    Martins G; Peixoto L; Teodorescu S; Parpot P; Nogueira R; Brito AG
    Bioresour Technol; 2014 Jan; 151():419-23. PubMed ID: 24210650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and operation of freshwater sediment microbial fuel cell for electricity generation.
    Song TS; Yan ZS; Zhao ZW; Jiang HL
    Bioprocess Biosyst Eng; 2011 Jun; 34(5):621-7. PubMed ID: 21221652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments.
    Zhou YL; Yang Y; Chen M; Zhao ZW; Jiang HL
    Bioresour Technol; 2014 May; 159():232-9. PubMed ID: 24657753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced phosphorus reduction in simulated eutrophic water: a comparative study of submerged macrophytes, sediment microbial fuel cells, and their combination.
    Xu P; Xiao E; Xu D; Li J; Zhang Y; Dai Z; Zhou Q; Wu Z
    Environ Technol; 2018 May; 39(9):1144-1157. PubMed ID: 28443365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell.
    Zhou YL; Jiang HL; Cai HY
    J Hazard Mater; 2015 Apr; 287():7-15. PubMed ID: 25621829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced phosphorus flux from overlying water to sediment in a bioelectrochemical system.
    Yang Q; Zhao H; Zhao N; Ni J; Gu X
    Bioresour Technol; 2016 Sep; 216():182-7. PubMed ID: 27240233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells.
    Song TS; Peng-Xiao ; Wu XY; Zhou CC
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1241-50. PubMed ID: 23657903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel method to immobilize phosphate in lakes using sediment microbial fuel cells.
    Haxthausen KAV; Lu X; Zhang Y; Gosewinkel U; Petersen DG; Marzocchi U; Brock AL; Trapp S
    Water Res; 2021 Jun; 198():117108. PubMed ID: 33901841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electricity generation through a photo sediment microbial fuel cell using algae at the cathode.
    Neethu B; Ghangrekar MM
    Water Sci Technol; 2017 Dec; 76(11-12):3269-3277. PubMed ID: 29236006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of phosphorus release from eutrophic lake sediments by sediment microbial fuel cells.
    Takemura Y; Syutsubo K; Kubota K
    Environ Technol; 2022 Jul; 43(17):2581-2589. PubMed ID: 33576727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sediment pretreatment on the performance of sediment microbial fuel cells.
    Song TS; Jiang HL
    Bioresour Technol; 2011 Nov; 102(22):10465-70. PubMed ID: 21967718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane emission reduction oriented extracellular electron transfer and bioremediation of sediment microbial fuel cell: A review.
    Xu C; Sun S; Li Y; Gao Y; Zhang W; Tian L; Li T; Du Q; Cai J; Zhou L
    Sci Total Environ; 2023 May; 874():162508. PubMed ID: 36863582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. No enhancement of cyanobacterial bloom biomass decomposition by sediment microbial fuel cell (SMFC) at different temperatures.
    Ye TR; Song N; Chen M; Yan ZS; Jiang HL
    Environ Pollut; 2016 Nov; 218():59-65. PubMed ID: 27552038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realignment of phosphorus in lake sediment induced by sediment microbial fuel cells (SMFC).
    Wang X; Zhi Y; Chen Y; Shen N; Wang G; Yan Y
    Chemosphere; 2022 Mar; 291(Pt 3):132927. PubMed ID: 34793847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Batteryless, wireless sensor powered by a sediment microbial fuel cell.
    Donovan C; Dewan A; Heo D; Beyenal H
    Environ Sci Technol; 2008 Nov; 42(22):8591-6. PubMed ID: 19068853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores): phylogenetic affiliation and electrochemical activity of sediment bacteria.
    Martins G; Peixoto L; Ribeiro DC; Parpot P; Brito AG; Nogueira R
    Bioelectrochemistry; 2010 Apr; 78(1):67-71. PubMed ID: 19716775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of cellulose degradation in freshwater sediments by a sediment microbial fuel cell.
    Zhu D; Wang DB; Song TS; Guo T; Wei P; Ouyang P; Xie J
    Biotechnol Lett; 2016 Feb; 38(2):271-7. PubMed ID: 26543037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells.
    Jeon HJ; Seo KW; Lee SH; Yang YH; Kumaran RS; Kim S; Hong SW; Choi YS; Kim HJ
    Bioresour Technol; 2012 Apr; 109():308-11. PubMed ID: 21724390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.
    Xu P; Xiao ER; Xu D; Zhou Y; He F; Liu BY; Zeng L; Wu ZB
    PLoS One; 2017; 12(2):e0172757. PubMed ID: 28241072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment.
    Lee YS; An J; Kim B; Park H; Kim J; Chang IS
    PLoS One; 2015; 10(12):e0145430. PubMed ID: 26714176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.