These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 24210781)

  • 1. Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits.
    Li G; Wang X; Cao J; Ju Z; Ma D; Liu Y; Zhang J
    Br J Oral Maxillofac Surg; 2014 Feb; 52(2):134-9. PubMed ID: 24210781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skelite) for late healing of critical size rabbit calvarial defects.
    El Backly RM; Zaky SH; Canciani B; Saad MM; Eweida AM; Brun F; Tromba G; Komlev VS; Mastrogiacomo M; Marei MK; Cancedda R
    J Craniomaxillofac Surg; 2014 Jul; 42(5):e70-9. PubMed ID: 23932544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources.
    Stockmann P; Park J; von Wilmowsky C; Nkenke E; Felszeghy E; Dehner JF; Schmitt C; Tudor C; Schlegel KA
    J Craniomaxillofac Surg; 2012 Jun; 40(4):310-20. PubMed ID: 21723141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sheet of osteoblastic cells combined with platelet-rich fibrin improves the formation of bone in critical-size calvarial defects in rabbits.
    Wang Z; Hu H; Li Z; Weng Y; Dai T; Zong C; Liu Y; Liu B
    Br J Oral Maxillofac Surg; 2016 Apr; 54(3):316-21. PubMed ID: 26781843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold.
    Petridis X; Diamanti E; Trigas GCh; Kalyvas D; Kitraki E
    J Craniomaxillofac Surg; 2015 May; 43(4):483-90. PubMed ID: 25753474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone repair using periodontal ligament progenitor cell-seeded constructs.
    Tour G; Wendel M; Moll G; Tcacencu I
    J Dent Res; 2012 Aug; 91(8):789-94. PubMed ID: 22736447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alveolar bone regeneration around immediate implants using an injectable nHAC/CSH loaded with autogenic blood-acquired mesenchymal progenitor cells: an experimental study in the dog mandible.
    Han X; Liu H; Wang D; Su F; Zhang Y; Zhou W; Li S; Yang R
    Clin Implant Dent Relat Res; 2013 Jun; 15(3):390-401. PubMed ID: 21745333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system.
    Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW
    Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined mesenchymal stem cell sheets and rhBMP-2-releasing calcium sulfate-rhBMP-2 scaffolds for segmental bone tissue engineering.
    Qi Y; Wang Y; Yan W; Li H; Shi Z; Pan Z
    Cell Transplant; 2012; 21(4):693-705. PubMed ID: 22236577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.
    Wittenburg G; Flade V; Garbe AI; Lauer G; Labudde D
    Br J Oral Maxillofac Surg; 2014 May; 52(5):409-14. PubMed ID: 24685477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of TriCalcium Phosphate (TCP) and stem cells for the regeneration of osteoperiosteal critical-size mandibular bony defects, an in vitro and preclinical study.
    Alfotawei R; Naudi KB; Lappin D; Barbenel J; Di Silvio L; Hunter K; McMahon J; Ayoub A
    J Craniomaxillofac Surg; 2014 Sep; 42(6):863-9. PubMed ID: 24485270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors.
    Lin CY; Chang YH; Kao CY; Lu CH; Sung LY; Yen TC; Lin KJ; Hu YC
    Biomaterials; 2012 May; 33(14):3682-92. PubMed ID: 22361095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adipose-derived stem cells combined with inorganic bovine bone in calvarial bone healing in rats with type 2 diabetes.
    Liang L; Song Y; Li L; Li D; Qin M; Zhao J; Xie C; Sun D; Liu Y; Jiao T; Liu N; Zou G
    J Periodontol; 2014 Apr; 85(4):601-9. PubMed ID: 23805817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial progenitors enhanced the osteogenic capacities of mesenchymal stem cells in vitro and in a rat alveolar bone defect model.
    Liang Y; Wen L; Shang F; Wu J; Sui K; Ding Y
    Arch Oral Biol; 2016 Aug; 68():123-30. PubMed ID: 27131592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells.
    Kim KI; Park S; Im GI
    Biomaterials; 2014 Jun; 35(17):4792-804. PubMed ID: 24655782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of human ethmoid sinus mucosa derived mesenchymal stem cells (hESMSCs) and the application of hESMSCs cell sheets in bone regeneration.
    Xie Q; Wang Z; Huang Y; Bi X; Zhou H; Lin M; Yu Z; Wang Y; Ni N; Sun J; Wu S; You Z; Guo C; Sun H; Wang Y; Gu P; Fan X
    Biomaterials; 2015 Oct; 66():67-82. PubMed ID: 26196534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo.
    Shah AR; Cornejo A; Guda T; Sahar DE; Stephenson SM; Chang S; Krishnegowda NK; Sharma R; Wang HT
    J Craniofac Surg; 2014 Jul; 25(4):1504-9. PubMed ID: 24943502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coculture of peripheral blood-derived mesenchymal stem cells and endothelial progenitor cells on strontium-doped calcium polyphosphate scaffolds to generate vascularized engineered bone.
    Fu WL; Xiang Z; Huang FG; Gu ZP; Yu XX; Cen SQ; Zhong G; Duan X; Liu M
    Tissue Eng Part A; 2015 Mar; 21(5-6):948-59. PubMed ID: 25298026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adipose mesenchymal stem cells associated with xenograft in a guided bone regeneration model: a histomorphometric study in rabbit calvaria.
    Zimmermann A; Pelegrine AA; Peruzzo D; Martinez EF; de Mello e Oliveira R; Aloise AC; Ferreira LM
    Int J Oral Maxillofac Implants; 2015; 30(6):1415-22. PubMed ID: 26574866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of rabbit bone mesenchymal stem cells into endothelial cells in vitro and promotion of defective bone regeneration in vivo.
    Liu J; Liu C; Sun B; Shi C; Qiao C; Ke X; Liu S; Liu X; Sun H
    Cell Biochem Biophys; 2014 Apr; 68(3):479-87. PubMed ID: 23943083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.