These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24211089)

  • 41. [In-vitro measurement of loading using an instrumented vertebral internal fixator].
    Rohlmann A; Eick O; Bergmann G; Graichen F
    Z Orthop Ihre Grenzgeb; 1995; 133(2):136-40. PubMed ID: 7754660
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement.
    Rohlmann A; Zander T; Bergmann G
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):221-7. PubMed ID: 16356613
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Spinal load bearing during sitting in an office chair with a tilting back].
    Rohlmann A; Wilke HJ; Graichen F; Bergmann G
    Biomed Tech (Berl); 2002 Apr; 47(4):91-6. PubMed ID: 12051139
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis.
    Shih SL; Chen CS; Lin HM; Huang LY; Liu CL; Huang CH; Cheng CK
    J Spinal Disord Tech; 2012 Jul; 25(5):E140-9. PubMed ID: 22744611
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro fixator rod loading after transforaminal compared to anterior lumbar interbody fusion.
    Kettler A; Niemeyer T; Issler L; Merk U; Mahalingam M; Werner K; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):435-42. PubMed ID: 16442678
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lifting up and laying down a weight causes high spinal loads.
    Rohlmann A; Zander T; Graichen F; Bergmann G
    J Biomech; 2013 Feb; 46(3):511-4. PubMed ID: 23141957
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Shear force allowance in lumbar spine under follower load in neutral standing posture.
    Kim K; Kim YH; Lee S
    Acta Bioeng Biomech; 2010; 12(4):49-53. PubMed ID: 21361256
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of body weight on spinal loads in various activities: a personalized biomechanical modeling approach.
    Hajihosseinali M; Arjmand N; Shirazi-Adl A
    J Biomech; 2015 Jan; 48(2):276-82. PubMed ID: 25498363
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The importance of the endplate for interbody cages in the lumbar spine.
    Polikeit A; Ferguson SJ; Nolte LP; Orr TE
    Eur Spine J; 2003 Dec; 12(6):556-61. PubMed ID: 12783287
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Load transfer characteristics between posterior spinal implants and the lumbar spine under anterior shear loading: an in vitro investigation.
    Melnyk AD; Wen TL; Kingwell S; Chak JD; Singh V; Cripton PA; Fisher CG; Dvorak MF; Oxland TR
    Spine (Phila Pa 1976); 2012 Aug; 37(18):E1126-33. PubMed ID: 22565384
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments.
    Bennett CR; Kelly BP
    J Biomech; 2013 Aug; 46(12):2087-92. PubMed ID: 23809771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Does the application site of spinal manipulative therapy alter spinal tissues loading?
    Funabashi M; Nougarou F; Descarreaux M; Prasad N; Kawchuk GN
    Spine J; 2018 Jun; 18(6):1041-1052. PubMed ID: 29355792
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influences of walking speed change on the lumbosacral joint force distribution.
    Cheng CK; Chen HH; Chen CS; Lee SJ
    Biomed Mater Eng; 1998; 8(3-4):155-65. PubMed ID: 10065882
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of angular mismatch between vertebral endplate and vertebral body replacement endplate on implant subsidence.
    Mohammad-Shahi MH; Nikolaou VS; Giannitsios D; Ouellet J; Jarzem PF
    J Spinal Disord Tech; 2013 Jul; 26(5):268-73. PubMed ID: 22228211
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of the loading frequency on the wear rate of a polyethylene-on-metal lumbar intervertebral disc replacement.
    Kettler A; Bushelow M; Wilke HJ
    Eur Spine J; 2012 Jun; 21 Suppl 5(Suppl 5):S709-16. PubMed ID: 20936310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo measurement of shoulder joint loads during walking with crutches.
    Westerhoff P; Graichen F; Bender A; Halder A; Beier A; Rohlmann A; Bergmann G
    Clin Biomech (Bristol, Avon); 2012 Aug; 27(7):711-8. PubMed ID: 22633130
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effects of upper limb loading on spinal shrinkage during treadmill walking.
    Watson H; Simpson A; Riches PE
    Eur Spine J; 2012 Dec; 21(12):2688-92. PubMed ID: 22644437
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomechanical comparison of effects of the Dynesys and Coflex dynamic stabilization systems on range of motion and loading characteristics in the lumbar spine: a finite element study.
    Kulduk A; Altun NS; Senkoylu A
    Int J Med Robot; 2015 Dec; 11(4):400-5. PubMed ID: 25643936
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data.
    Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ
    J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differences in lumbar spine load due to posture and upper limb external load.
    KamiƄska J; Roman-Liu D; Zagrajek T; Borkowski P
    Int J Occup Saf Ergon; 2010; 16(4):421-30. PubMed ID: 21144261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.