BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24211448)

  • 1. Quality control of a molybdoenzyme by the Lon protease.
    Redelberger D; Genest O; Arabet D; Méjean V; Ilbert M; Iobbi-Nivol C
    FEBS Lett; 2013 Dec; 587(24):3935-42. PubMed ID: 24211448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaperone protection of immature molybdoenzyme during molybdenum cofactor limitation.
    Genest O; Seduk F; Théraulaz L; Méjean V; Iobbi-Nivol C
    FEMS Microbiol Lett; 2006 Dec; 265(1):51-5. PubMed ID: 17107419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA.
    Ilbert M; Méjean V; Giudici-Orticoni MT; Samama JP; Iobbi-Nivol C
    J Biol Chem; 2003 Aug; 278(31):28787-92. PubMed ID: 12766163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature.
    Genest O; Ilbert M; Méjean V; Iobbi-Nivol C
    J Biol Chem; 2005 Apr; 280(16):15644-8. PubMed ID: 15723832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in Escherichia coli.
    Reschke S; Sigfridsson KG; Kaufmann P; Leidel N; Horn S; Gast K; Schulzke C; Haumann M; Leimkühler S
    J Biol Chem; 2013 Oct; 288(41):29736-45. PubMed ID: 24003231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components.
    Genest O; Neumann M; Seduk F; Stöcklein W; Méjean V; Leimkühler S; Iobbi-Nivol C
    J Biol Chem; 2008 Aug; 283(31):21433-40. PubMed ID: 18522945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes.
    Genest O; Méjean V; Iobbi-Nivol C
    FEMS Microbiol Lett; 2009 Aug; 297(1):1-9. PubMed ID: 19519768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal peptide protection by specific chaperone.
    Genest O; Seduk F; Ilbert M; Méjean V; Iobbi-Nivol C
    Biochem Biophys Res Commun; 2006 Jan; 339(3):991-5. PubMed ID: 16337610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins.
    Ilbert M; Méjean V; Iobbi-Nivol C
    Microbiology (Reading); 2004 Apr; 150(Pt 4):935-943. PubMed ID: 15073303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamine N-Oxide Reductase.
    Kaufmann P; Duffus BR; Mitrova B; Iobbi-Nivol C; Teutloff C; Nimtz M; Jänsch L; Wollenberger U; Leimkühler S
    Biochemistry; 2018 Feb; 57(7):1130-1143. PubMed ID: 29334455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli.
    Pommier J; Méjean V; Giordano G; Iobbi-Nivol C
    J Biol Chem; 1998 Jun; 273(26):16615-20. PubMed ID: 9632735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial molybdoenzymes: old enzymes for new purposes.
    Leimkühler S; Iobbi-Nivol C
    FEMS Microbiol Rev; 2016 Jan; 40(1):1-18. PubMed ID: 26468212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaperones in maturation of molybdoenzymes: Why specific is better than general?
    Lemaire ON; Bouillet S; Méjean V; Iobbi-Nivol C; Genest O
    Bioengineered; 2017 Mar; 8(2):133-136. PubMed ID: 27580420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a pre-export enzyme-chaperone complex on the twin-arginine transport pathway.
    Dow JM; Gabel F; Sargent F; Palmer T
    Biochem J; 2013 May; 452(1):57-66. PubMed ID: 23452237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria.
    Zupok A; Iobbi-Nivol C; Méjean V; Leimkühler S
    Metallomics; 2019 Oct; 11(10):1602-1624. PubMed ID: 31517366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdenum cofactor-dependent resistance to N-hydroxylated base analogs in Escherichia coli is independent of MobA function.
    Kozmin SG; Schaaper RM
    Mutat Res; 2007 Jun; 619(1-2):9-15. PubMed ID: 17349664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species.
    Dos Santos JP; Iobbi-Nivol C; Couillault C; Giordano G; Méjean V
    J Mol Biol; 1998 Nov; 284(2):421-33. PubMed ID: 9813127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity.
    Wohlever ML; Baker TA; Sauer RT
    Mol Microbiol; 2014 Jan; 91(1):66-78. PubMed ID: 24205897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal ions inhibit molybdoenzyme activity by binding to the dithiolene moiety of molybdopterin in Escherichia coli.
    Neumann M; Leimkühler S
    FEBS J; 2008 Nov; 275(22):5678-89. PubMed ID: 18959753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodobacter capsulatus XdhC is involved in molybdenum cofactor binding and insertion into xanthine dehydrogenase.
    Neumann M; Schulte M; Jünemann N; Stöcklein W; Leimkühler S
    J Biol Chem; 2006 Jun; 281(23):15701-8. PubMed ID: 16597619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.