These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24211457)

  • 1. Nanopore detection of copper ions using a polyhistidine probe.
    Wang G; Wang L; Han Y; Zhou S; Guan X
    Biosens Bioelectron; 2014 Mar; 53():453-8. PubMed ID: 24211457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule porphyrin-metal ion interaction and sensing application.
    Wei K; Yao F; Kang XF
    Biosens Bioelectron; 2018 Jun; 109():272-278. PubMed ID: 29571164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probe-assisted detection of Fe
    Arora P; Zheng H; Munusamy S; Jahani R; Wang L; Guan X
    Biosens Bioelectron; 2024 May; 251():116125. PubMed ID: 38359668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin.
    Li T; Liu L; Li Y; Xie J; Wu HC
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7568-71. PubMed ID: 25966821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive simultaneous detection of lead(II) and barium(II) with G-quadruplex DNA in α-hemolysin nanopore.
    Yang C; Liu L; Zeng T; Yang D; Yao Z; Zhao Y; Wu HC
    Anal Chem; 2013 Aug; 85(15):7302-7. PubMed ID: 23895278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanopore-Based Strategy for Sensing of Copper(II) Ion and Real-Time Monitoring of a Click Reaction.
    Liu L; Fang Z; Zheng X; Xi D
    ACS Sens; 2019 May; 4(5):1323-1328. PubMed ID: 31050287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing mercury(II)-DNA interactions by nanopore stochastic sensing.
    Wang G; Zhao Q; Kang X; Guan X
    J Phys Chem B; 2013 May; 117(17):4763-9. PubMed ID: 23565989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein nanopore-based, single-molecule exploration of copper binding to an antimicrobial-derived, histidine-containing chimera peptide.
    Mereuta L; Schiopu I; Asandei A; Park Y; Hahm KS; Luchian T
    Langmuir; 2012 Dec; 28(49):17079-91. PubMed ID: 23140333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single glass nanopore-based regenerable sensing platforms with a non-immobilized polyglutamic acid probe for selective detection of cupric ions.
    Chen L; He H; Xu X; Jin Y
    Anal Chim Acta; 2015 Aug; 889():98-105. PubMed ID: 26343431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-based detection of mercury(II) ions through characteristic current signals in nanopores with high sensitivity and selectivity.
    Zeng T; Li T; Li Y; Liu L; Wang X; Liu Q; Zhao Y; Wu HC
    Nanoscale; 2014 Aug; 6(15):8579-84. PubMed ID: 24975417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single molecule sensing by nanopores and nanopore devices.
    Gu LQ; Shim JW
    Analyst; 2010 Mar; 135(3):441-51. PubMed ID: 20174694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopore detection of metal ions: Current status and future directions.
    Roozbahani GM; Chen X; Zhang Y; Wang L; Guan X
    Small Methods; 2020 Oct; 4(10):. PubMed ID: 33365387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges in DNA motion control and sequence readout using nanopore devices.
    Carson S; Wanunu M
    Nanotechnology; 2015 Feb; 26(7):074004. PubMed ID: 25642629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and [Formula: see text]-hemolysin nanopores
    Fennouri A; Ramiandrisoa J; Bacri L; Mathé J; Daniel R
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):127. PubMed ID: 30338424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopore biosensor for label-free and real-time detection of anthrax lethal factor.
    Wang L; Han Y; Zhou S; Wang G; Guan X
    ACS Appl Mater Interfaces; 2014 May; 6(10):7334-9. PubMed ID: 24806593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive and selective DNA-based detection of mercury(II) with α-hemolysin nanopore.
    Wen S; Zeng T; Liu L; Zhao K; Zhao Y; Liu X; Wu HC
    J Am Chem Soc; 2011 Nov; 133(45):18312-7. PubMed ID: 21995430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing.
    Guo B; Sheng Y; Zhou K; Liu Q; Liu L; Wu HC
    Angew Chem Int Ed Engl; 2018 Mar; 57(14):3602-3606. PubMed ID: 29488675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximal Capture Dynamics for a Single Biological Nanopore Sensor.
    Pederson ED; Barbalas J; Drown BS; Culbertson MJ; Keranen Burden LM; Kasianowicz JJ; Burden DL
    J Phys Chem B; 2015 Aug; 119(33):10448-55. PubMed ID: 26203555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DFT study of isolated histidine interactions with metal ions (Ni
    Franklin LM; Walker SM; Hill G
    J Mol Model; 2020 May; 26(6):116. PubMed ID: 32377871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.