These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24211457)

  • 21. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Label-Free Sensing of Human 8-Oxoguanine DNA Glycosylase Activity with a Nanopore.
    Shang J; Li Z; Liu L; Xi D; Wang H
    ACS Sens; 2018 Feb; 3(2):512-518. PubMed ID: 29363311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structures of Dronpa complexed with quenchable metal ions provide insight into metal biosensor development.
    Kim IJ; Kim S; Park J; Eom I; Kim S; Kim JH; Ha SC; Kim YG; Hwang KY; Nam KH
    FEBS Lett; 2016 Sep; 590(17):2982-90. PubMed ID: 27433793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Translocation of single-stranded DNA through the α-hemolysin protein nanopore in acidic solutions.
    de Zoysa RS; Krishantha DM; Zhao Q; Gupta J; Guan X
    Electrophoresis; 2011 Nov; 32(21):3034-41. PubMed ID: 21997574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconfigurable Optical Sensor for Metal-Ion-Mediated Label-Free Recognition of Different Biomolecular Targets.
    Di Giulio T; Corsi M; Gagliani F; De Benedetto G; Malitesta C; Mazzei A; Barca A; Verri T; Barillaro G; Mazzotta E
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):43752-43761. PubMed ID: 39106976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retarded Translocation of Nucleic Acids through α-Hemolysin Nanopore in the Presence of a Calcium Flux.
    Wang S; Wang Y; Yan S; Du X; Zhang P; Chen HY; Huang S
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):26926-26935. PubMed ID: 32432849
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-molecule study of proteins by biological nanopore sensors.
    Wu D; Bi S; Zhang L; Yang J
    Sensors (Basel); 2014 Sep; 14(10):18211-22. PubMed ID: 25268917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Translocation intermediates of ubiquitin through an α-hemolysin nanopore: implications for detection of post-translational modifications.
    Bonome EL; Cecconi F; Chinappi M
    Nanoscale; 2019 May; 11(20):9920-9930. PubMed ID: 31069350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic-Nanopore Biosensors for Superior Single-Molecule Detection.
    Spitzberg JD; Zrehen A; van Kooten XF; Meller A
    Adv Mater; 2019 Jun; 31(23):e1900422. PubMed ID: 30941823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Label-free histamine detection with nanofluidic diodes through metal ion displacement mechanism.
    Ali M; Ramirez P; Duznovic I; Nasir S; Mafe S; Ensinger W
    Colloids Surf B Biointerfaces; 2017 Feb; 150():201-208. PubMed ID: 27915002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Dual-Response DNA Probe for Simultaneously Monitoring Enzymatic Activity and Environmental pH Using a Nanopore.
    Liu L; You Y; Zhou K; Guo B; Cao Z; Zhao Y; Wu HC
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):14929-14934. PubMed ID: 31442357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions.
    Guo Y; Zhang L; Zhang S; Yang Y; Chen X; Zhang M
    Biosens Bioelectron; 2015 Jan; 63():61-71. PubMed ID: 25058940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications.
    Miles BN; Ivanov AP; Wilson KA; Doğan F; Japrung D; Edel JB
    Chem Soc Rev; 2013 Jan; 42(1):15-28. PubMed ID: 22990878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computation-Assisted Nanopore Detection of Thorium Ions.
    Roozbahani GM; Chen X; Zhang Y; Juarez O; Li D; Guan X
    Anal Chem; 2018 May; 90(9):5938-5944. PubMed ID: 29648804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A rapid and sensitive detection of HBV DNA using a nanopore sensor.
    Yao F; Zhang Y; Wei Y; Kang X
    Chem Commun (Camb); 2014 Nov; 50(89):13853-6. PubMed ID: 25260160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A patch-clamp ASIC for nanopore-based DNA analysis.
    Kim J; Maitra R; Pedrotti KD; Dunbar WB
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):285-95. PubMed ID: 23853328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-Pot Species Release and Nanopore Detection in a Voltage-Stable Lipid Bilayer Platform.
    Kang X; Alibakhshi MA; Wanunu M
    Nano Lett; 2019 Dec; 19(12):9145-9153. PubMed ID: 31724865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ formation of fluorescent copper nanoparticles for ultrafast zero-background Cu2+ detection and its toxicides screening.
    Qing Z; Zhu L; Yang S; Cao Z; He X; Wang K; Yang R
    Biosens Bioelectron; 2016 Apr; 78():471-476. PubMed ID: 26657590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasensitive and Selective Copper(II) Detection: Introducing a Bioinspired and Robust Sensor.
    Müller LK; Duznovic I; Tietze D; Weber W; Ali M; Stein V; Ensinger W; Tietze AA
    Chemistry; 2020 Jul; 26(39):8511-8517. PubMed ID: 32196774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanopore analysis of the effect of metal ions on the folding of peptides and proteins.
    Lee JS
    Protein Pept Lett; 2014 Mar; 21(3):247-55. PubMed ID: 24370255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.