These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24211474)

  • 21. Protein thermostability in extremophiles.
    Scandurra R; Consalvi V; Chiaraluce R; Politi L; Engel PC
    Biochimie; 1998 Nov; 80(11):933-41. PubMed ID: 9893953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factors enhancing protein thermostability.
    Kumar S; Tsai CJ; Nussinov R
    Protein Eng; 2000 Mar; 13(3):179-91. PubMed ID: 10775659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular basis of the thermostability and thermophilicity of laminarinases: X-ray structure of the hyperthermostable laminarinase from Rhodothermus marinus and molecular dynamics simulations.
    Bleicher L; Prates ET; Gomes TC; Silveira RL; Nascimento AS; Rojas AL; Golubev A; Martínez L; Skaf MS; Polikarpov I
    J Phys Chem B; 2011 Jun; 115(24):7940-9. PubMed ID: 21619042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An in silico method for designing thermostable variant of a dimeric mesophilic protein based on its 3D structure.
    Basu S; Sen S
    J Mol Graph Model; 2013 May; 42():92-103. PubMed ID: 23584153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering a substrate-specific cold-adapted subtilisin.
    Tindbaek N; Svendsen A; Oestergaard PR; Draborg H
    Protein Eng Des Sel; 2004 Feb; 17(2):149-56. PubMed ID: 15047911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermostabilization of Bacillus circulans xylanase via computational design of a flexible surface cavity.
    Joo JC; Pohkrel S; Pack SP; Yoo YJ
    J Biotechnol; 2010 Mar; 146(1-2):31-9. PubMed ID: 20074594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibrational entropy differences between mesophile and thermophile proteins and their use in protein engineering.
    Frappier V; Najmanovich R
    Protein Sci; 2015 Apr; 24(4):474-83. PubMed ID: 25367089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermostabilizing mutations preferentially occur at structural weak spots with a high mutation ratio.
    Rathi PC; Radestock S; Gohlke H
    J Biotechnol; 2012 Jun; 159(3):135-44. PubMed ID: 22326626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced thermostability of a mesophilic xylanase by N-terminal replacement designed by molecular dynamics simulation.
    Yin X; Li JF; Wang JQ; Tang CD; Wu MC
    J Sci Food Agric; 2013 Sep; 93(12):3016-23. PubMed ID: 23512640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and dynamic features of cold-shock proteins of Listeria monocytogenes, a psychrophilic bacterium.
    Lee J; Jeong KW; Jin B; Ryu KS; Kim EH; Ahn JH; Kim Y
    Biochemistry; 2013 Apr; 52(14):2492-504. PubMed ID: 23506337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis.
    Joo JC; Pack SP; Kim YH; Yoo YJ
    J Biotechnol; 2011 Jan; 151(1):56-65. PubMed ID: 20959126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermostability engineering of industrial enzymes through structure modification.
    Nezhad NG; Rahman RNZRA; Normi YM; Oslan SN; Shariff FM; Leow TC
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):4845-4866. PubMed ID: 35804158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An integrated approach for thermal stabilization of a mesophilic adenylate kinase.
    Moon S; Jung DK; Phillips GN; Bae E
    Proteins; 2014 Sep; 82(9):1947-59. PubMed ID: 24615904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Turning a mesophilic protein into a thermophilic one: a computational approach based on 3D structural features.
    Basu S; Sen S
    J Chem Inf Model; 2009 Jul; 49(7):1741-50. PubMed ID: 19586011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced stability of a protein with increasing temperature.
    Vinther JM; Kristensen SM; Led JJ
    J Am Chem Soc; 2011 Jan; 133(2):271-8. PubMed ID: 21166411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new way of enhancing the thermostability of proteases.
    Imanaka T; Shibazaki M; Takagi M
    Nature; 1986 Dec 18-31; 324(6098):695-7. PubMed ID: 3540685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein.
    Matsumura M; Yasumura S; Aiba S
    Nature; 1986 Sep 25-Oct 1; 323(6086):356-8. PubMed ID: 3020429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Key role of proximal water in regulating thermostable proteins.
    Sterpone F; Bertonati C; Briganti G; Melchionna S
    J Phys Chem B; 2009 Jan; 113(1):131-7. PubMed ID: 19072709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.