These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24211474)

  • 41. A Novel Strategy for Thermostability Improvement of Trypsin Based on N-Glycosylation within the Ω-Loop Region.
    Guo C; Liu Y; Yu H; Du K; Gan Y; Huang H
    J Microbiol Biotechnol; 2016 Jul; 26(7):1163-72. PubMed ID: 27012235
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermostability in rubredoxin and its relationship to mechanical rigidity.
    Rader AJ
    Phys Biol; 2009 Dec; 7():16002. PubMed ID: 20009190
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent advances in simultaneous thermostability-activity improvement of industrial enzymes through structure modification.
    Nezhad NG; Rahman RNZRA; Normi YM; Oslan SN; Shariff FM; Leow TC
    Int J Biol Macromol; 2023 Mar; 232():123440. PubMed ID: 36708895
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Defining thermostability of membrane proteins by western blotting.
    Ashok Y; Nanekar R; Jaakola VP
    Protein Eng Des Sel; 2015 Dec; 28(12):539-42. PubMed ID: 26384510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering the thermostability of a TIM-barrel enzyme by rational family shuffling.
    Kamondi S; Szilágyi A; Barna L; Závodszky P
    Biochem Biophys Res Commun; 2008 Oct; 374(4):725-30. PubMed ID: 18667161
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two strategies to engineer flexible loops for improved enzyme thermostability.
    Yu H; Yan Y; Zhang C; Dalby PA
    Sci Rep; 2017 Feb; 7():41212. PubMed ID: 28145457
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent advances in the improvement of enzyme thermostability by structure modification.
    Xu Z; Cen YK; Zou SP; Xue YP; Zheng YG
    Crit Rev Biotechnol; 2020 Feb; 40(1):83-98. PubMed ID: 31690132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quality matters: extension of clusters of residues with good hydrophobic contacts stabilize (hyper)thermophilic proteins.
    Rathi PC; Höffken HW; Gohlke H
    J Chem Inf Model; 2014 Feb; 54(2):355-61. PubMed ID: 24437522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236.
    Jeong MY; Kim S; Yun CW; Choi YJ; Cho SG
    J Biotechnol; 2007 Jan; 127(2):300-9. PubMed ID: 16919348
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystal structure and thermostability of a putative α-glucosidase from Thermotoga neapolitana.
    Yun BY; Jun SY; Kim NA; Yoon BY; Piao S; Park SH; Jeong SH; Lee H; Ha NC
    Biochem Biophys Res Commun; 2011 Dec; 416(1-2):92-8. PubMed ID: 22093829
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant.
    Feng X; Tang H; Han B; Zhang L; Lv B; Li C
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):9955-9966. PubMed ID: 27325137
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stability and rigidity/flexibility-two sides of the same coin?
    Mamonova TB; Glyakina AV; Galzitskaya OV; Kurnikova MG
    Biochim Biophys Acta; 2013 May; 1834(5):854-66. PubMed ID: 23416444
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimized electrostatic surfaces parallel increased thermostability: a structural bioinformatic analysis.
    Alsop E; Silver M; Livesay DR
    Protein Eng; 2003 Dec; 16(12):871-4. PubMed ID: 14983065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Configurational entropy elucidates the role of salt-bridge networks in protein thermostability.
    Missimer JH; Steinmetz MO; Baron R; Winkler FK; Kammerer RA; Daura X; van Gunsteren WF
    Protein Sci; 2007 Jul; 16(7):1349-59. PubMed ID: 17586770
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus.
    Jin B; Jeong KW; Kim Y
    Biochem Biophys Res Commun; 2014 Aug; 451(3):402-7. PubMed ID: 25101648
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes.
    Maugini E; Tronelli D; Bossa F; Pascarella S
    Comput Biol Chem; 2009 Apr; 33(2):137-48. PubMed ID: 18845483
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential modulation of binding loop flexibility and stability by Arg50 and Arg52 in Cucurbita maxima trypsin inhibitor-V deduced by trypsin-catalyzed hydrolysis and NMR spectroscopy.
    Cai M; Huang Y; Prakash O; Wen L; Dunkelbarger SP; Huang JK; Liu J; Krishnamoorthi R
    Biochemistry; 1996 Apr; 35(15):4784-94. PubMed ID: 8664268
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural features of thermozymes.
    Li WF; Zhou XX; Lu P
    Biotechnol Adv; 2005 Jun; 23(4):271-81. PubMed ID: 15848038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular dynamics perspective on the protein thermal stability: a case study using SAICAR synthetase.
    Manjunath K; Sekar K
    J Chem Inf Model; 2013 Sep; 53(9):2448-61. PubMed ID: 23962324
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glycine-15 in the bend between two alpha-helices can explain the thermostability of DNA binding protein HU from Bacillus stearothermophilus.
    Kawamura S; Kakuta Y; Tanaka I; Hikichi K; Kuhara S; Yamasaki N; Kimura M
    Biochemistry; 1996 Jan; 35(4):1195-200. PubMed ID: 8573574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.