BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24211539)

  • 1. An in vitro approach to assessing a potential drug interaction between MDMA (ecstasy) and caffeine.
    Downey C; Daly F; O'Boyle KM
    Toxicol In Vitro; 2014 Mar; 28(2):231-9. PubMed ID: 24211539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA ("Ecstasy") and MDA ("Love").
    McNamara R; Kerans A; O'Neill B; Harkin A
    Neuropharmacology; 2006 Jan; 50(1):69-80. PubMed ID: 16188283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of caffeine to MDMA does not increase antinociception but potentiates adverse effects of this recreational drug.
    Camarasa J; Pubill D; Escubedo E
    Brain Res; 2006 Sep; 1111(1):72-82. PubMed ID: 16889759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serotonin transporter expression is not sufficient to confer cytotoxicity to 3,4-methylenedioxymethamphetamine (MDMA) in vitro.
    Hayat S; Williams RJ; Rattray M
    J Psychopharmacol; 2006 Mar; 20(2):257-63. PubMed ID: 16510483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users: the longitudinal perspective.
    Thomasius R; Zapletalova P; Petersen K; Buchert R; Andresen B; Wartberg L; Nebeling B; Schmoldt A
    J Psychopharmacol; 2006 Mar; 20(2):211-25. PubMed ID: 16510479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of 3,4-methylenedioxymethamphetamine (MDMA) on serotonin transporter and vesicular monoamine transporter 2 protein and gene expression in rats: implications for MDMA neurotoxicity.
    Biezonski DK; Meyer JS
    J Neurochem; 2010 Feb; 112(4):951-62. PubMed ID: 20002520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caffeine induces a profound and persistent tachycardia in response to MDMA ("Ecstasy") administration.
    McNamara R; Maginn M; Harkin A
    Eur J Pharmacol; 2007 Jan; 555(2-3):194-8. PubMed ID: 17126829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotoxicity mechanisms of thioether ecstasy metabolites.
    Capela JP; Macedo C; Branco PS; Ferreira LM; Lobo AM; Fernandes E; Remião F; Bastos ML; Dirnagl U; Meisel A; Carvalho F
    Neuroscience; 2007 Jun; 146(4):1743-57. PubMed ID: 17467183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between 3,4-methylenedioxymethamphetamine, methamphetamine, ketamine, and caffeine in human intestinal Caco-2 cells and in oral administration to rats.
    Kuwayama K; Inoue H; Kanamori T; Tsujikawa K; Miyaguchi H; Iwata Y; Miyauchi S; Kamo N; Kishi T
    Forensic Sci Int; 2007 Aug; 170(2-3):183-8. PubMed ID: 17614227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurochemical and Neurotoxic Effects of MDMA (Ecstasy) and Caffeine After Chronic Combined Administration in Mice.
    Górska AM; Kamińska K; Wawrzczak-Bargieła A; Costa G; Morelli M; Przewłocki R; Kreiner G; Gołembiowska K
    Neurotox Res; 2018 Apr; 33(3):532-548. PubMed ID: 29134560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The confounding problem of polydrug use in recreational ecstasy/MDMA users: a brief overview.
    Gouzoulis-Mayfrank E; Daumann J
    J Psychopharmacol; 2006 Mar; 20(2):188-93. PubMed ID: 16510477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic interactions between ethanol and MDMA in primary cultured rat hepatocytes.
    Pontes H; de Pinho PG; Fernandes E; Branco PS; Ferreira LM; Carmo H; Remião F; Carvalho F; Bastos ML
    Toxicology; 2010 Apr; 270(2-3):150-7. PubMed ID: 20170704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotoxicity of Ecstasy metabolites in rat cortical neurons, and influence of hyperthermia.
    Capela JP; Meisel A; Abreu AR; Branco PS; Ferreira LM; Lobo AM; Remião F; Bastos ML; Carvalho F
    J Pharmacol Exp Ther; 2006 Jan; 316(1):53-61. PubMed ID: 16183702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Ecstasy"-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites.
    Barbosa DJ; Capela JP; Silva R; Ferreira LM; Branco PS; Fernandes E; Bastos ML; Carvalho F
    Arch Toxicol; 2014 Feb; 88(2):515-31. PubMed ID: 24177245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risperidone attenuates and reverses hyperthermia induced by 3,4-methylenedioxymethamphetamine (MDMA) in rats.
    Shioda K; Nisijima K; Yoshino T; Kuboshima K; Iwamura T; Yui K; Kato S
    Neurotoxicology; 2008 Nov; 29(6):1030-6. PubMed ID: 18722468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MDMA in humans: factors which affect the neuropsychobiological profiles of recreational ecstasy users, the integrative role of bioenergetic stress.
    Parrott AC
    J Psychopharmacol; 2006 Mar; 20(2):147-63. PubMed ID: 16510474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy").
    Green AR; Mechan AO; Elliott JM; O'Shea E; Colado MI
    Pharmacol Rev; 2003 Sep; 55(3):463-508. PubMed ID: 12869661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of 3,4-methylenedioxymethamphetamine ("ecstasy") on body temperature and liver antioxidant status in mice: influence of ambient temperature.
    Carvalho M; Carvalho F; Remião F; de Lourdes Pereira M; Pires-das-Neves R; de Lourdes Bastos M
    Arch Toxicol; 2002 Apr; 76(3):166-72. PubMed ID: 11967622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms mediating the ability of caffeine to influence MDMA ('Ecstasy')-induced hyperthermia in rats.
    Vanattou-Saïfoudine N; McNamara R; Harkin A
    Br J Pharmacol; 2010 Jun; 160(4):860-77. PubMed ID: 20590585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MDMA ("ecstasy") abuse as an example of dopamine neuroplasticity.
    Schenk S
    Neurosci Biobehav Rev; 2011 Apr; 35(5):1203-18. PubMed ID: 21184779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.