BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 24211566)

  • 21. Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii.
    Arica MY; Bayramoglu G; Yilmaz M; Bektaş S; Genç O
    J Hazard Mater; 2004 Jun; 109(1-3):191-9. PubMed ID: 15177759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel magnetic beads based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal for Pb²⁺ in aqueous solutions by using a batch and continuous systems.
    Li X; Qi Y; Li Y; Zhang Y; He X; Wang Y
    Bioresour Technol; 2013 Aug; 142():611-9. PubMed ID: 23771001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosorption of uranium(VI) from aqueous solution using calcium alginate beads.
    Gok C; Aytas S
    J Hazard Mater; 2009 Aug; 168(1):369-75. PubMed ID: 19303705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoalginate based biosorbent for the removal of lead ions from aqueous solutions: Equilibrium and kinetic studies.
    Geetha P; Latha MS; Pillai SS; Koshy M
    Ecotoxicol Environ Saf; 2015 Dec; 122():17-23. PubMed ID: 26164724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism.
    Ren H; Gao Z; Wu D; Jiang J; Sun Y; Luo C
    Carbohydr Polym; 2016 Feb; 137():402-409. PubMed ID: 26686144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Layered double hydroxide-alginate/polyvinyl alcohol beads: fabrication and phosphate removal from aqueous solution.
    Kim Phuong NT
    Environ Technol; 2014; 35(21-24):2829-36. PubMed ID: 25176487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution.
    Jung KW; Jeong TU; Kang HJ; Ahn KH
    Bioresour Technol; 2016 Jul; 211():108-16. PubMed ID: 27010340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pb(II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange and mechanism studies.
    Ngah WS; Fatinathan S
    J Environ Sci (China); 2010; 22(3):338-46. PubMed ID: 20614774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of binary adsorption isotherms of Cu(2+), Cd(2+) and Pb(2+) on calcium alginate beads from single adsorption data.
    Papageorgiou SK; Katsaros FK; Kouvelos EP; Kanellopoulos NK
    J Hazard Mater; 2009 Mar; 162(2-3):1347-54. PubMed ID: 18653278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic alginate beads for Pb(II) ions removal from wastewater.
    Bée A; Talbot D; Abramson S; Dupuis V
    J Colloid Interface Sci; 2011 Oct; 362(2):486-92. PubMed ID: 21767847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic investigation of Pb
    Peng J; Xiao Q; Wang Z; Zhou F; Yu J; Chi R; Xiao C
    Environ Sci Pollut Res Int; 2024 May; 31(21):31605-31618. PubMed ID: 38637484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thallium(I) sorption using Prussian blue immobilized in alginate capsules.
    Vincent T; Taulemesse JM; Dauvergne A; Chanut T; Testa F; Guibal E
    Carbohydr Polym; 2014 Jan; 99():517-26. PubMed ID: 24274538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methylene Blue removal from aqueous solution by a biocomposite synthesized from sodium alginate and wastes of oil extraction from almond peanut.
    Erfani M; Javanbakht V
    Int J Biol Macromol; 2018 Jul; 114():244-255. PubMed ID: 29550422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosorption of Cr (VI) with Trichoderma viride immobilized fungal biomass and cell free Ca-alginate beads.
    Bishnoi NR; Kumar R; Bishnoi K
    Indian J Exp Biol; 2007 Jul; 45(7):657-64. PubMed ID: 17821865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of copper(II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads.
    Vijayalakshmi K; Gomathi T; Latha S; Hajeeth T; Sudha PN
    Int J Biol Macromol; 2016 Jan; 82():440-52. PubMed ID: 26434525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu
    Pawar RR; Lalhmunsiama ; Ingole PG; Lee SM
    Int J Biol Macromol; 2020 Dec; 164():3145-3154. PubMed ID: 32827615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorptive removal of patulin from apple juice using Ca-alginate-activated carbon beads.
    Yue T; Guo C; Yuan Y; Wang Z; Luo Y; Wang L
    J Food Sci; 2013 Oct; 78(10):T1629-T1635. PubMed ID: 24032606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porous synthetic hectorite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution.
    Pawar RR; Lalhmunsiama ; Gupta P; Sawant SY; Shahmoradi B; Lee SM
    Int J Biol Macromol; 2018 Jul; 114():1315-1324. PubMed ID: 29630958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads.
    Hassan AF; Abdel-Mohsen AM; Elhadidy H
    Int J Biol Macromol; 2014 Jul; 68():125-30. PubMed ID: 24780567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.