BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 24211799)

  • 1. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.
    Reznikov N; Shahar R; Weiner S
    Bone; 2014 Feb; 59():93-104. PubMed ID: 24211799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures.
    Reznikov N; Almany-Magal R; Shahar R; Weiner S
    Bone; 2013 Feb; 52(2):676-83. PubMed ID: 23153959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 3D structure of the collagen fibril network in human trabecular bone: relation to trabecular organization.
    Reznikov N; Chase H; Brumfeld V; Shahar R; Weiner S
    Bone; 2015 Feb; 71():189-95. PubMed ID: 25445457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone hierarchical structure in three dimensions.
    Reznikov N; Shahar R; Weiner S
    Acta Biomater; 2014 Sep; 10(9):3815-26. PubMed ID: 24914825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional structure of minipig fibrolamellar bone: adaptation to axial loading.
    Almany Magal R; Reznikov N; Shahar R; Weiner S
    J Struct Biol; 2014 May; 186(2):253-64. PubMed ID: 24632449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone structure: from angstroms to microns.
    Weiner S; Traub W
    FASEB J; 1992 Feb; 6(3):879-85. PubMed ID: 1740237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lamellar bone: structure-function relations.
    Weiner S; Traub W; Wagner HD
    J Struct Biol; 1999 Jun; 126(3):241-55. PubMed ID: 10475685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the role of water in lamellar bone by dehydration in the environmental scanning electron microscope.
    Utku FS; Klein E; Saybasili H; Yucesoy CA; Weiner S
    J Struct Biol; 2008 Jun; 162(3):361-7. PubMed ID: 18440829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focused ion beam-SEM 3D analysis of mineralized osteonal bone: lamellae and cement sheath structures.
    Raguin E; Rechav K; Shahar R; Weiner S
    Acta Biomater; 2021 Feb; 121():497-513. PubMed ID: 33217569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteonal lamellae elementary units: lamellar microstructure, curvature and mechanical properties.
    Faingold A; Cohen SR; Reznikov N; Wagner HD
    Acta Biomater; 2013 Apr; 9(4):5956-62. PubMed ID: 23220032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The three-dimensional structure of anosteocytic lamellated bone of fish.
    Atkins A; Reznikov N; Ofer L; Masic A; Weiner S; Shahar R
    Acta Biomater; 2015 Feb; 13():311-23. PubMed ID: 25449924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography.
    Varga P; Pacureanu A; Langer M; Suhonen H; Hesse B; Grimal Q; Cloetens P; Raum K; Peyrin F
    Acta Biomater; 2013 Sep; 9(9):8118-27. PubMed ID: 23707503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril arrays.
    Weiner S; Arad T; Sabanay I; Traub W
    Bone; 1997 Jun; 20(6):509-14. PubMed ID: 9177863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations between nanostructure and micromechanical properties of healing bone.
    Hoerth RM; Kerschnitzki M; Aido M; Schmidt I; Burghammer M; Duda GN; Fratzl P; Willie BM; Wagermaier W
    J Mech Behav Biomed Mater; 2018 Jan; 77():258-266. PubMed ID: 28957701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transitional structures in lamellar bone.
    Ziv V; Sabanay I; Arad T; Traub W; Weiner S
    Microsc Res Tech; 1996 Feb; 33(2):203-13. PubMed ID: 8845519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae.
    Schrof S; Varga P; Galvis L; Raum K; Masic A
    J Struct Biol; 2014 Sep; 187(3):266-275. PubMed ID: 25025981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and formation of the twisted plywood pattern of collagen fibrils in rat lamellar bone.
    Yamamoto T; Hasegawa T; Sasaki M; Hongo H; Tabata C; Liu Z; Li M; Amizuka N
    J Electron Microsc (Tokyo); 2012 Apr; 61(2):113-21. PubMed ID: 22362877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal organization in rat bone lamellae.
    Weiner S; Arad T; Traub W
    FEBS Lett; 1991 Jul; 285(1):49-54. PubMed ID: 2065782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone.
    Falgayrac G; Facq S; Leroy G; Cortet B; Penel G
    Appl Spectrosc; 2010 Jul; 64(7):775-80. PubMed ID: 20615291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.