These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 24211856)
1. Photoreceptors in whirler mice show defective transducin translocation and are susceptible to short-term light/dark changes-induced degeneration. Tian M; Wang W; Delimont D; Cheung L; Zallocchi M; Cosgrove D; Peng YW Exp Eye Res; 2014 Jan; 118():145-53. PubMed ID: 24211856 [TBL] [Abstract][Full Text] [Related]
2. Moderate light-induced degeneration of rod photoreceptors with delayed transducin translocation in shaker1 mice. Peng YW; Zallocchi M; Wang WM; Delimont D; Cosgrove D Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6421-7. PubMed ID: 21447681 [TBL] [Abstract][Full Text] [Related]
3. Rhodopsin signaling mediates light-induced photoreceptor cell death in rd10 mice through a transducin-independent mechanism. Sundar JC; Munezero D; Bryan-Haring C; Saravanan T; Jacques A; Ramamurthy V Hum Mol Genet; 2020 Feb; 29(3):394-406. PubMed ID: 31925423 [TBL] [Abstract][Full Text] [Related]
4. Transducin translocation contributes to rod survival and enhances synaptic transmission from rods to rod bipolar cells. Majumder A; Pahlberg J; Boyd KK; Kerov V; Kolandaivelu S; Ramamurthy V; Sampath AP; Artemyev NO Proc Natl Acad Sci U S A; 2013 Jul; 110(30):12468-73. PubMed ID: 23836670 [TBL] [Abstract][Full Text] [Related]
5. Loss of retinoschisin (RS1) cell surface protein in maturing mouse rod photoreceptors elevates the luminance threshold for light-driven translocation of transducin but not arrestin. Ziccardi L; Vijayasarathy C; Bush RA; Sieving PA J Neurosci; 2012 Sep; 32(38):13010-21. PubMed ID: 22993419 [TBL] [Abstract][Full Text] [Related]
6. EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat. Zallocchi M; Binley K; Lad Y; Ellis S; Widdowson P; Iqball S; Scripps V; Kelleher M; Loader J; Miskin J; Peng YW; Wang WM; Cheung L; Delimont D; Mitrophanous KA; Cosgrove D PLoS One; 2014; 9(4):e94272. PubMed ID: 24705452 [TBL] [Abstract][Full Text] [Related]
7. Rod Photoreceptors Avoid Saturation in Bright Light by the Movement of the G Protein Transducin. Frederiksen R; Morshedian A; Tripathy SA; Xu T; Travis GH; Fain GL; Sampath AP J Neurosci; 2021 Apr; 41(15):3320-3330. PubMed ID: 33593858 [TBL] [Abstract][Full Text] [Related]
8. Transducin activation state controls its light-dependent translocation in rod photoreceptors. Kerov V; Chen D; Moussaif M; Chen YJ; Chen CK; Artemyev NO J Biol Chem; 2005 Dec; 280(49):41069-76. PubMed ID: 16207703 [TBL] [Abstract][Full Text] [Related]
10. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. Nakao T; Tsujikawa M; Notomi S; Ikeda Y; Nishida K PLoS One; 2012; 7(4):e32472. PubMed ID: 22485131 [TBL] [Abstract][Full Text] [Related]
11. Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse. Sokolov M; Strissel KJ; Leskov IB; Michaud NA; Govardovskii VI; Arshavsky VY J Biol Chem; 2004 Apr; 279(18):19149-56. PubMed ID: 14973130 [TBL] [Abstract][Full Text] [Related]
12. Deletion of GRK1 causes retina degeneration through a transducin-independent mechanism. Fan J; Sakurai K; Chen CK; Rohrer B; Wu BX; Yau KW; Kefalov V; Crouch RK J Neurosci; 2010 Feb; 30(7):2496-503. PubMed ID: 20164334 [TBL] [Abstract][Full Text] [Related]
13. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Tam BM; Moritz OL Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3234-41. PubMed ID: 16877386 [TBL] [Abstract][Full Text] [Related]
14. Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Sokolov M; Lyubarsky AL; Strissel KJ; Savchenko AB; Govardovskii VI; Pugh EN; Arshavsky VY Neuron; 2002 Mar; 34(1):95-106. PubMed ID: 11931744 [TBL] [Abstract][Full Text] [Related]
15. Cul3-Klhl18 ubiquitin ligase modulates rod transducin translocation during light-dark adaptation. Chaya T; Tsutsumi R; Varner LR; Maeda Y; Yoshida S; Furukawa T EMBO J; 2019 Dec; 38(23):e101409. PubMed ID: 31696965 [TBL] [Abstract][Full Text] [Related]
16. Wheel running exercise protects against retinal degeneration in the I307N rhodopsin mouse model of inducible autosomal dominant retinitis pigmentosa. Zhang X; Girardot PE; Sellers JT; Li Y; Wang J; Chrenek MA; Wu W; Skelton H; Nickerson JM; Pardue MT; Boatright JH Mol Vis; 2019; 25():462-476. PubMed ID: 31523123 [TBL] [Abstract][Full Text] [Related]
17. Rod photoreceptor neurite sprouting in retinitis pigmentosa. Li ZY; Kljavin IJ; Milam AH J Neurosci; 1995 Aug; 15(8):5429-38. PubMed ID: 7643192 [TBL] [Abstract][Full Text] [Related]
18. Transducin translocation in rods is triggered by saturation of the GTPase-activating complex. Lobanova ES; Finkelstein S; Song H; Tsang SH; Chen CK; Sokolov M; Skiba NP; Arshavsky VY J Neurosci; 2007 Jan; 27(5):1151-60. PubMed ID: 17267570 [TBL] [Abstract][Full Text] [Related]
19. A novel form of transducin-dependent retinal degeneration: accelerated retinal degeneration in the absence of rod transducin. Brill E; Malanson KM; Radu RA; Boukharov NV; Wang Z; Chung HY; Lloyd MB; Bok D; Travis GH; Obin M; Lem J Invest Ophthalmol Vis Sci; 2007 Dec; 48(12):5445-53. PubMed ID: 18055791 [TBL] [Abstract][Full Text] [Related]